(B) B先停转. (C) C先停转. (D) A、C同时停转.
4. 银河系中有一天体是均匀球体,其半径为R,绕其对称轴自转的周期为T,由于引力凝聚的作用,体积不断收缩,则一万年以后应有
(A) 自转周期变小,动能也变小. (B) 自转周期变小,动能增大. (C) 自转周期变大,动能增大. (D) 自转周期变大,动能减小. (E) 自转周期不变,动能减小.
5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,
(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.
(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.
(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒. (D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒. 二.填空题
1. 半径为20cm的主动轮,通过皮带拖动半径为50cm的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s内被动轮的角速度达到8? rad/s,则主动轮在这段时间内转过了 圈.
2. 在XOY平面内的三个质点,质量分别为m1 = 1kg, m2 = 2kg,和 m3 = 3kg,位置坐标(以米为单位)分别为m1 (-3,-2)、m2 (-2,1)和m3 (1,2),则这三个质点构成的质点组对Z轴的转动惯量Iz = .
3. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R1速率为v1的圆周运动,今用力F慢慢往下拉绳子,当圆周运动的半径减小到R2时,则小球的速率为 , 力F做的功为 .
练习七 答案
一.选择题 C A A BA
二.填空题
12
1. 20. 2. 38kg ·m2.
3. R1v1/R2, (1/2)m v12(R12/R22-1).
练习八 谐振动
一.选择题
1. 以下所列运动形态哪些不是简谐振动?
(1) 球形碗底小球小幅度的摆动; (2) 细绳悬挂的小球作大幅度的摆动; (3) 小木球在水面上的上下浮动;
(4) 橡皮球在地面上作等高的上下跳动;
(5) 木质圆柱体在水面上的上下浮动(母线垂直于水面). (A) (1) (2) (3) (4) (5) 都不是简谐振动. (B) (1) (2) (3) (4) 不是简谐振动. (C) (2) (3) (4) 不是简谐振动. (D) (1) (2) (3) 不是简谐振动.
2. 同一弹簧振子按图16.1的三种方法放置,它们的振动周期分别为Ta、Tb、Tc(摩擦力忽略),则三者之间的关系为
(A) Ta=Tb=Tc. (B) Ta=Tb>Tc. (C) Ta>Tb>Tc. (D) Ta (a) (b) 图16.1 ? (c) (E) Ta>Tb 3. 两个质量分别为m1、m2并由一根轻弹簧的两端连接着的小球放在光滑的水平面上.当m1固定时, m2的振动频率为ν2, 当 m2固定时, m1的振动频率为ν1,则ν1等于 (A) ν2. (B) m1ν2/ m2. (C) m2ν2/ m1. (D) ν2m2/m1. 4. 把一个在地球上走得很准的摆钟搬到月球上,取月球上的重力加速度为g/6,这个钟的分针走过一周,实际上所经历的时间是 (A) 6小时. (B) 6小时. (C) (1/6)小时. (D) (6/6)小时. 13 5. 两根轻弹簧和一质量为m的物体组成一振动系统,弹簧的倔强系数为k1和k2,串联后与物体相接,如图16.2.则此系统的固有频率为ν等于 (A) (B) (C) (D) 二.填空题 1. 作简谐振动的小球, 振动速度的最大值为vm=3cm/s, 振幅为A=2cm, 则小球振动的周期为 , 加速度的最大值为 ;若以速度为正最大时作计时零点,振动表达式为 . 2. 一复摆作简谐振动时角位移随时间的关系为? = 0.1cos(0.2 t +0.5), 式中各量均为IS制,则刚体振动的角频率? = , 刚体运动的角速度?=d? /dt = ,角速度的最大值 (k1?k2)/m/?2??. k1k2/[(k1?k2)m?2??. k1 k2 m 图16.2. m/(k1?k2)?2??. (k1?k2)/(k1k2m)/2?. ?max= . 3. 如图16.3所示的旋转矢量图,描述一质点作简谐振动,通过计算得出在t=0时刻,它在X轴上的P点,位移为x=+2A/2,速度v<0.只考虑位移时,它对应着旋转矢量图中圆周上的 点,再考虑速度的方向,它应只对应旋转矢量图中圆周上的 点,由此得出质点振动的初位相值为 . B -A O P v C 图16.3 A x 2A/2 练习八 答案 一.选择题 C A D B B 二.填空题 1. 4?/3,4.5cm/s2,x=2cos(3t/2-?/2). 2 0.2rad/s,?0.02sin(0.2t+0.5) (SI),0.02 rad/s. 3. B C, B, +?/4. 练习九 谐振动能量 谐振动合成 一.选择题 1. 一质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是 (A) T/4. (B) T/2. (C) T. (D) 2T. 2. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为 14 振动总能量的 (A) 7/16. (B) 9/16. (C) 11/16. (D) 15/16. 3. 一质点作谐振动,其方程为x=Acos(?t+?).在求质点的振动动能时,得出下面5个表达式 (1) (1/2)m?2A2sin2(? t +?); (2) (1/2)m?2A2cos2(? t +?); (3) (1/2)kA2 sin(? t +?); (4) (1/2)kA2 cos2(? t +?); (5) (2?2/T2)mA2 sin2(? t +?); 其中m是质点的质量,k是弹簧的倔强系数,T是振动的周期.下面结论中正确的是 (A) (1), (4)是对的; (B) (2), (4)是对的; (C) (1), (5)是对的; (D) (3), (5)是对的; (E) (2), (5)是对的. 4. 要测一音叉的固有频率,可选择一标准音叉,同时敲打它们,耳朵听到的声音是这两音叉引起耳膜振动的合成.今选得的标准音叉的固有频率为ν0= 632Hz,敲打待测音叉与己知音叉后听到的声音在10s内有5次变强,则待测音叉的频率ν (A) 一定等于634 Hz. (B) 一定等于630 Hz. (C) 可能等于632 Hz. (D) 不肯定.如果在待测音叉上加一小块橡皮泥后敲打测得拍频变小,则肯定待测音叉的固有频率为634 Hz. 5. 有两个振动:x1 = A1cos? t, x2 = A2sin? t,且A2< A1.则合成振动的振幅为 (A) A1 + A2 . (B) A1-A2 . (C) (A12 + A22)1/2 . (D) (A12-A22)1/2. 二.填空题 1. 一物体同时参与同一直线上的两个简谐振动: x1 = 0.03cos ( 4 ? t + ? /3 ) (SI) 与 x2 = 0.05cos ( 4 ? t-2?/3 ) (SI) 15