(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为 ?; (4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?
22.(10分)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:
(1)货车的速度是 千米/小时;轿车的速度是 千米/小时;t值为 . (2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;
(3)请直接写出货车出发多长时间两车相距90千米.
23.(12分)综合与实践
折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.
折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②
(一)填一填,做一做: (1)图②中,?CMD? . 线段NF?
(2)图②中,试判断?AND的形状,并给出证明.
剪一剪、折一折:将图②中的?AND剪下来,将其沿直线GH折叠,使点A落在点A?处,分别得到图③、图④. (二)填一填
(3)图③中阴影部分的周长为 .
(4)图③中,若?AGN??80?,则?A?HD? ?. (5)图③中的相似三角形(包括全等三角形)共有 对; (6)如图④点A?落在边ND上,若24.(14分)综合与探究
如图,抛物线y?x2?bx?c与x轴交于A、B两点,与y轴交于C点,OA?2,OC?6,连接AC和BC. (1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当?ACD的周长最小时,点D的坐标为 .
(3)点E是第四象限内抛物线上的动点,连接CE和BE.求?BCE面积的最大值及此时点
A?NmAG. ? (用含m,n的代数式表示)?,则
AHA?Dn
E的坐标;
(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
2019年黑龙江省黑河市中考数学试卷
参考答案与试题解析
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.(3分)3的相反数是( ) A.?3
B.3 C.3
D.?3
【考点】14:相反数;28:实数的性质;22:算术平方根 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【解答】解:3的相反数是?3, 故选:A.
【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.(3分)下面四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【考点】R5:中心对称图形;P3:轴对称图形 【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;
B、不是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选:D.
【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.(3分)下列计算不正确的是( ) A.?9??3 C.(2?1)0?1
B.2ab?3ba?5ab D.(3ab2)2?6a2b4
【考点】35:合并同类项;6E:零指数幂;21:平方根;47:幂的乘方与积的乘方 【分析】直接利用同底数幂的乘除运算法则以及完全平方公式、合并同类项法则分别化简得