高质量c编程规范 下载本文

高质量C++/C 编程指南,v 1.0

C++语言有很严格的类型安全检查,不允许上述情况发生。由于C++程序可以调用C函数,为了避免混乱,规定任何C++/ C函数都必须有类型。如果函数没有返回值,那么应声明为void类型。

【规则6-2-2】函数名字与返回值类型在语义上不可冲突。 违反这条规则的典型代表是C标准库函数getchar。 例如: char c; c = getchar(); if (c == EOF) ?

按照getchar名字的意思,将变量c声明为char类型是很自然的事情。但不幸的是getchar的确不是char类型,而是int类型,其原型如下:

int getchar(void);

由于c是char类型,取值范围是[-128,127],如果宏EOF的值在char的取值范围之外,那么if语句将总是失败,这种“危险”人们一般哪里料得到!导致本例错误的责任并不在用户,是函数getchar误导了使用者。

【规则6-2-3】不要将正常值和错误标志混在一起返回。正常值用输出参数获得,而错误标志用return语句返回。

回顾上例,C标准库函数的设计者为什么要将getchar声明为令人迷糊的int类型呢?他会那么傻吗?

在正常情况下,getchar的确返回单个字符。但如果getchar碰到文件结束标志或发生读错误,它必须返回一个标志EOF。为了区别于正常的字符,只好将EOF定义为负数(通常为负1)。因此函数getchar就成了int类型。

我们在实际工作中,经常会碰到上述令人为难的问题。为了避免出现误解,我们应该将正常值和错误标志分开。即:正常值用输出参数获得,而错误标志用return语句返回。 函数getchar可以改写成 BOOL GetChar(char *c);

虽然gechar比GetChar灵活,例如 putchar(getchar()); 但是如果getchar用错了,它的灵活性又有什么用呢?

【建议6-2-1】有时候函数原本不需要返回值,但为了增加灵活性如支持链式表达,可以附加返回值。

例如字符串拷贝函数strcpy的原型: char *strcpy(char *strDest,const char *strSrc);

strcpy函数将strSrc拷贝至输出参数strDest中,同时函数的返回值又是strDest。这样做并非多此一举,可以获得如下灵活性:

2001

Page 29 of 87

char str[20];

int length = strlen( strcpy(str, “Hello World”) );

高质量C++/C 编程指南,v 1.0

【建议6-2-2】如果函数的返回值是一个对象,有些场合用“引用传递”替换“值传递”可以提高效率。而有些场合只能用“值传递”而不能用“引用传递”,否则会出错。 例如: class String {?

// 赋值函数

String & operate=(const String &other);

String operate+( const String &s1, const String &s2);

// 相加函数,如果没有friend修饰则只许有一个右侧参数 friend private: } { }

对于赋值函数,应当用“引用传递”的方式返回String对象。如果用“值传递”的方式,虽然功能仍然正确,但由于return语句要把 *this拷贝到保存返回值的外部存储单元之中,增加了不必要的开销,降低了赋值函数的效率。例如: {

2001

char *m_data;

String的赋值函数operate = 的实现如下:

String & String::operate=(const String &other)

if (this == &other)

return *this; delete m_data;

m_data = new char[strlen(other.data)+1]; strcpy(m_data, other.data);

return *this; // 返回的是 *this的引用,无需拷贝过程

String a,b,c; ? a = b; a = b = c;

// 如果用“值传递”,将产生一次 *this 拷贝 // 如果用“值传递”,将产生两次 *this 拷贝

String的相加函数operate + 的实现如下:

String operate+(const String &s1, const String &s2)

String temp;

delete temp.data; // temp.data是仅含‘\\0’的字符串

temp.data = new char[strlen(s1.data) + strlen(s2.data) +1]; strcpy(temp.data, s1.data); strcat(temp.data, s2.data);

Page 30 of 87

高质量C++/C 编程指南,v 1.0

}

return temp;

对于相加函数,应当用“值传递”的方式返回String对象。如果改用“引用传递”,那么函数返回值是一个指向局部对象temp的“引用”。由于temp在函数结束时被自动销毁,将导致返回的“引用”无效。例如:

c = a + b;

此时 a + b 并不返回期望值,c什么也得不到,流下了隐患。 6.3 函数内部实现的规则

不同功能的函数其内部实现各不相同,看起来似乎无法就“内部实现”达成一致的观点。但根据经验,我们可以在函数体的“入口处”和“出口处”从严把关,从而提高函数的质量。

【规则6-3-1】在函数体的“入口处”,对参数的有效性进行检查。

很多程序错误是由非法参数引起的,我们应该充分理解并正确使用“断言”(assert)来防止此类错误。详见6.5节“使用断言”。

【规则6-3-2】在函数体的“出口处”,对return语句的正确性和效率进行检查。 如果函数有返回值,那么函数的“出口处”是return语句。我们不要轻视return语句。如果return语句写得不好,函数要么出错,要么效率低下。 注意事项如下:

(1)return语句不可返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。例如

char * Func(void) { }

char str[] = “hello world”; // str的内存位于栈上 ? return str;

// 将导致错误

(2)要搞清楚返回的究竟是“值”、“指针”还是“引用”。

(3)如果函数返回值是一个对象,要考虑return语句的效率。例如

return String(s1 + s2);

这是临时对象的语法,表示“创建一个临时对象并返回它”。不要以为它与“先创建一个局部对象temp并返回它的结果”是等价的,如 String temp(s1 + s2); return temp;

实质不然,上述代码将发生三件事。首先,temp对象被创建,同时完成初始化;然后拷贝构造函数把temp拷贝到保存返回值的外部存储单元中;最后,temp在函数结束时被销毁(调用析构函数)。然而“创建一个临时对象并返回它”的过程是不同的,编译器直接把临时对象创建并初始化在外部存储单元中,省去了拷贝和析构的化费,提高了效率。

2001

Page 31 of 87

高质量C++/C 编程指南,v 1.0

类似地,我们不要将

return int(x + y); // 创建一个临时变量并返回它 写成

int temp = x + y; return temp;

由于内部数据类型如int,float,double的变量不存在构造函数与析构函数,虽然该“临时变量的语法”不会提高多少效率,但是程序更加简洁易读。 6.4 其它建议

【建议6-4-1】函数的功能要单一,不要设计多用途的函数。 【建议6-4-2】函数体的规模要小,尽量控制在50行代码之内。

【建议6-4-3】尽量避免函数带有“记忆”功能。相同的输入应当产生相同的输出。 带有“记忆”功能的函数,其行为可能是不可预测的,因为它的行为可能取决于某种“记忆状态”。这样的函数既不易理解又不利于测试和维护。在C/C++语言中,函数的static局部变量是函数的“记忆”存储器。建议尽量少用static局部变量,除非必需。 【建议6-4-4】不仅要检查输入参数的有效性,还要检查通过其它途径进入函数体内的变量的有效性,例如全局变量、文件句柄等。

【建议6-4-5】用于出错处理的返回值一定要清楚,让使用者不容易忽视或误解错误情况。 6.5 使用断言

程序一般分为Debug版本和Release版本,Debug版本用于内部调试,Release版本发行给用户使用。

断言assert是仅在Debug版本起作用的宏,它用于检查“不应该”发生的情况。示例6-5是一个内存复制函数。在运行过程中,如果assert的参数为假,那么程序就会中止(一般地还会出现提示对话,说明在什么地方引发了assert)。 { } 示例6-5 复制不重叠的内存块

assert不是一个仓促拼凑起来的宏。为了不在程序的Debug版本和Release版本引起差别,assert不应该产生任何副作用。所以assert不是函数,而是宏。程序员可以把assert看成一个在任何系统状态下都可以安全使用的无害测试手段。如果程序在assert处终止了,并不是说含有该assert的函数有错误,而是调用者出了差错,assert可以帮助我们找到发生错误的原因。

2001

Page 32 of 87

void *memcpy(void *pvTo, const void *pvFrom, size_t size) assert((pvTo != NULL) && (pvFrom != NULL)); // 使用断言 byte *pbTo = (byte *) pvTo; while(size -- > 0 ) *pbTo ++ = *pbFrom ++ ; return pvTo; // 防止改变pvTo的地址 // 防止改变pvFrom的地址 byte *pbFrom = (byte *) pvFrom;