7. Èç¹ûx=1:-2:-8,Ôòx(1)ºÍx(5)·Ö±ðÊÇ()
A£®1£¬-8 B£®-1,-7 C£®-1,-8 D£®1,-7 8. MATLAB±í´ïʽ2*2^3^2µÄ½á¹ûÊÇ()
A£®128 B£®4096 C. 262144 D£®256 9. ÏÂÁÐÄĸö±äÁ¿µÄ¶¨ÒåÊDz»ºÏ·¨µÄ£¨£©¡£
(A) abcd-3 (B) xyz_3 (C) abcdef (D) x3yz
10. Ö¸³öÏÂÁдíÎóµÄÖ¸Á£©¡£
(A) syms a b; (B) syms a, b; (C) syms(?a', ?b'); (D) syms(?a','b','positive');
b d a A B
11.ÏÂÁÐÄÄÌõÖ¸ÁîÊÇÇó¾ØÕóµÄÐÐÁÐʽµÄÖµ£¨£©¡£
(A) inv (B) diag (C) det (D) eig
invÊÇÇóÄæ¾ØÕó
diag ÊǾØÕó¶Ô½ÇÔªËØµÄÌáÈ¡ºÍ´´½¨¶Ô½ÇÕó sqrt(x) ¡ª¡ª ÇóxµÄƽ·½¸ù abs(x)¡ª¡ª ÇóxµÄ¾ø¶ÔÖµ det(a)¡ª¡ª ÇóÐÐÁÐʽµÄÖµ
eig¡ª¡ª¼ÆËã¾ØÕóAµÄÌØÕ÷ÖµºÍÌØÕ÷ÏòÁ¿µÄº¯Êý
clf; ÓÃÀ´Çå³ýͼÐεÄÃüÁî
12 .Çå¿Õ Matlab ¹¤×÷¿Õ¼äÄÚËùÓбäÁ¿µÄÖ¸ÁîÊÇ£¨£©¡£
(A) clc (B) cls (C) clear (D) clf
13¡¢ÏÂÁбäÁ¿ÃûÖСª¡ª¡ª¡ªÊǺϷ¨µÄ¡£
(A) char_1 ; (B) x*y ; (C) x\\y ; (D) end
14.ÒÔÏÂÄĸö˵·¨ÊÇÕýÈ·µÄ£¨£©¡£
(A)Matlab ½øÐÐÊýÖµ¼ÆËãµÄ±í´ï¾«¶ÈÓëÆäÖ¸Áî´°¿ÚÖеÄÊýÖµÏÔʾ¾«¶ÈÏàͬ¡£ (B)Matlab Ö¸Áî´°¿ÚÖÐÏÔʾµÄÊýÖµÓÐЧλÊý²»Äܳ¬¹ý 7 λ¡£
(C)ÊäÈë¶þάÊýÖµÊý×éʱ£¬ÐèÒªÓõ½¶ººÅºÍ·ÖºÅ£¬ËüÃÇ¿ÉÒÔÔÚÖÐÎÄ״̬ÏÂÊäÈë¡£ (D)ÀúÊ·Ö¸Áî´°¿ÚËù¼Ç¼µÄÄÚÈÝ Óë diary Ö¸ÁîËù²úÉú¡°ÈÕÖ¾¡±ÄÚÈÝÊDz»Í¬µÄ¡£
15. ²úÉúËÄάµ¥Î»¾ØÕóµÄÓï¾äΪ().
A.ones(4) B.eye(4) C.zeros(4) D.rand(4) >> eye(4)
ans =
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
>> ones(4) ans =
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
>> zeros(4) ans =
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>> rand(4) ans =
0.8147 0.6324 0.9575 0.9572 0.9058 0.0975 0.9649 0.4854 0.1270 0.2785 0.1576 0.8003 0.9134 0.5469 0.9706 0.1419
C C a D b
16.Çó½âÏßÐÔ·½³Ì×éAx=b,µ±det(A)¡Ù0ʱ£¬·½³ÌµÄ½âÊÇ().
A. A\\b B.b/A C.b\\A D.A/b
17. ÔËÐÐÈçϳÌÐòºó£¬ÊäÈ룹»Ø³µ£¬ÃüÁî´°¿Ú£¨command windows£©ÏÔʾµÄ½á¹ûΪ()
c=input('ÇëÊäÈëÒ»¸ö×Ö·û','s'); if c>='A' & c<='Z'
disp(setstr(abs(c)+abs('a')-abs('A'))); elseif c>='a'& c<='z'
disp(setstr(abs(c)- abs('a')+abs('A'))); elseif c>='0'& c<='9' disp(abs(c)-abs('0')); else disp(c); end
A. 9 B. 8 C. 7 D. 6
18. ÔËÐÐÏÂÃæµÄ´úÂëºó£¬ÊäÈ룺£±»Ø³µ£¬£²»Ø³µ£¬£±»Ø³µ£¬ÔòÊä³ö½á¹ûΪ£¨ £© a=input('a=?'); b=input('b=?'); c=input('c=?'); d=b*b-4*a*c;
x=[(-b+sqrt(d))/(2*a),(-b-sqrt(d))/(2*a)];
disp(['x1=',num2str(x(1)),',x2=',num2str(x(2))]);
£Á. x1=num2str(1) x2=num2str(1) B. x1=num2str(-1) x2=num2str(1) C. x1= -1 x2=-1 D. x1=1 x2=-1
19. Çå³ý¹¤×÷¿Õ¼ä£¨wordspace£©µÄÃüÁîÊÇ£¨ £©
£Á. clc; B. clear; C. clf; D.delete;
20. ÔËÐÐÈçϳÌÐòºó£¬ÊäÈ룹»Ø³µ£¬ÃüÁî´°¿Ú£¨command windows£©ÏÔʾµÄ½á¹ûΪ( )
x=input('ÇëÊäÈëxµÄÖµ:'); if x==10
y=cos(x+1)+sqrt(x*x+1); else
y=(3^(1/2))*sqrt(x+sqrt(x)); end y
A. 9 B. 8 C. 7 D. 6
a a c b d
21. ÔËÐÐÈçϳÌÐòºó, ÃüÁî´°¿Ú£¨command windows£©ÏÔʾµÄ½á¹ûΪ( b) s=0;
a=[12,13,14;15,16,17;18,19,20]; for k=a s=s+k; end disp(s');
A. 144 B. 39 48 57 C.145 D. 45 48 51
22. ÔËÐÐÈçϳÌÐòºó, ÃüÁî´°¿Ú£¨command windows£©ÏÔʾµÄ½á¹ûΪ(b ) k=0;
for n=100:200
if rem(n,21)~=0 %R=rem(X,Y),ÇóÓàÊýº¯Êý,X,YÓ¦¸ÃΪÕýÊý
k=k+1; continue end break; end k
A.105 B. 5 C.4 D.101
23. ͼÐδ°¿Ú£¨Figure£©ÏÔÊ¾Íø¸ñµÄÃüÁîÊÇ£¨ b£©
A. axis on B. grid on C. box on D. hold on 24. ÒÑÖªº¯ÊýÎļþÈçÏ£¬Ôòfactor(4)=(c ) function f=factor(n)
if n<=1 f=1; else
f=factor(n-1)*n; end
A. 4 B. 12 C. 24 D.48
25. ÔËÐÐÈçϳÌÐòºó, ÃüÁî´°¿Ú£¨command windows£©ÏÔʾµÄ½á¹ûΪ( d) A=[13,-56,78; 25,63,-735; 78,25,563; 1,0,-1]; y=max(max(A))
A. y=564 B.y=9 C.y=-735 D.y=563
26. ÔÚͼÐÎÖ¸¶¨Î»Öüӱê×¢ÃüÁîÊÇ£¨c £©
A. title(x,y,?y=sin(x)?); B. xlabel(x,y,?y=sin(x)?);
C. text(x,y,?y=sin(x)?); D. legend(x,y,?y=sin(x)?); %Ìí¼ÓͼÀýµÄ±ê×¢,
27.ÏÂÁÐÄĸöº¯ÊýΪ²åÖµº¯Êý£¨b £©
A. P=polyfit(X,Y,3) B. Y1=interp1(X,Y,X1,'method') C. [Y,I]=sort(A,dim) D. R=corrcoef(X)
28£®i=2; a=2i; b=2*i; c=2*sqrt(-1); ³ÌÐòÖ´Ðкó£»a, b, cµÄÖµ·Ö±ðÊǶàÉÙ£¿c (A)a=4, b=4, c=2.0000i
(B)a=4, b=2.0000i, c=2.0000i (C)a=2.0000i, b=4, c=2.0000i
(D) a=2.0000i, b=2.0000i, c=2.0000i
29. Çó½â·½³Ìx4-4x3+12x-9 = 0 µÄËùÓнâa (A)1.0000, 3.0000, 1.7321, -1.7321 (B)1.0000, 3.0000, 1.7321i, -1.7321i (C)1.0000i, 3.0000i, 1.7321, -1.7321 (D)-3.0000i, 3.0000i, 1.7321, -1.7321
30¡¢ÔÚÑ»·½á¹¹ÖÐÌø³öÑ»·£¬µ«¼ÌÐøÏ´ÎÑ»·µÄÃüÁîΪ ¡£c (A) return; (B) break ; (C) continue ; (D) keyboard
31. ÓÃroundº¯ÊýËÄÉáÎåÈë¶ÔÊý×é[2.48 6.39 3.93 8.52]È¡Õû£¬½á¹ûΪ c (A) [2 6 3 8] (B) [2 6 4 8] (C) [2 6 4 9] (D) [3 7 4 9]