∵四边形ABCD是正方形, ∴BD=8
,OB=BD﹣OD=8
﹣5,OP=)2=40
=8﹣
﹣51.5,
,
∴PN2=ON2﹣OP2=52﹣(8﹣∵MN=2PN, ∴MN2=4PN2=4(40
﹣51.5)=160﹣206.
【点评】本题考查切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
24.(10分)(2016?余姚市模拟)机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.
(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%. ①润滑用油量为80kg,用油量的重复利用率为多少?
②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【考点】一元二次方程的应用.
【分析】(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;
(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.
【解答】解:(1)根据题意可得:70×(1﹣60%)=28(kg);
(2)①60%+1.6%(90﹣80)=76%;
②设润滑用油量是x千克,则 x{1﹣[60%+1.6%(90﹣x)]}=12, 整理得:x2﹣65x﹣750=0, (x﹣75)(x+10)=0,
解得:x1=75,x2=﹣10(舍去), 60%+1.6%(90﹣x)=84%,
答:设备的润滑用油量是75千克,用油的重复利用率是84%.
【点评】此题主要考查了一元二次方程的应用,根据题意正确表示出用油的重复利用率是解题关键.
25.(12分)(2016?余姚市模拟)如果两个三角形的两条边对应相等,夹角互补,那么这AC为边向外作正方形ABDE两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、和ACGF,则图中的两个三角形就是互补三角形. (1)用尺规将图1中的△ABC分割成两个互补三角形; (2)证明图2中的△ABC分割成两个互补三角形;
(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.
①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为
、
、
的三角形,并计算图3中六边形DEFGHI的面积.
②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.
【考点】作图—应用与设计作图;三角形的面积. 【分析】(1)作BC边上的中线AD即可. (2)根据互补三角形的定义证明即可. (3)①画出图形后,利用割补法求面积即可.
②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可. 【解答】解:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.
(2)如图2中,延长FA到点H,使得AH=AF,连接EH.
∵四边形ABDE,四边形ACGF是正方形, ∴AB=AE,AF=AC,∠BAE=∠CAF=90°, ∴∠EAF+∠BAC=180°,
∴△AEF和△ABC是两个互补三角形. ∵∠EAH+∠HAB=∠BAC+∠HAB=90°, ∴∠EAH=∠BAC, ∵AF=AC,
∴AH=AB,
在△AEH和△ABC中,
∴△AEH≌△ABC, ∴S△AEF=S△AEH=S△ABC.
(3)①边长为
、
、
的三角形如图4所示.
∵S△ABC=3×4﹣2﹣1.5﹣3=5.5, ∴S六边形=17+13+10+4×5.5=62.
②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,
∵AM∥CH,CH⊥BC, ∴AM⊥BC,
∴∠EAM=90°+90°﹣x=180°﹣x, ∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x, ∴∠EAM=∠DBI,∵AE=BD, ∴△AEM≌△DBI,
∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°, ∴△DBI和△ABC是互补三角形,