2008-2009上学期高二期末考试数学试卷(理科) 下载本文

聿怀中学2008--2009上学期高二期末考试

数学科试卷(理科)2009 1。14

(注意:考试时间:120分钟、分数:150分.请将各题的解答过程写在答题卷的指定位置) 一.选择题(本小题共8个小题,每小题5分,满分40分,把正确答案的代号填在答题卷的相应表格中) 1.下列命题错误的是 ( ** )

11?   ab

cc11C. 若a?b?c?0,则?    D. 若0?a?b,则n?n (n?N*)ababA. 若a?b,则?a??b      B . 若a?b?0,则2.目标函数z?2x?y,变量x,y满足 ??x?1?3x?5y?25?x?4y?3?0?,则有( ** )

A. zmax?12,zmin?3      B. zmax?12,z无最小值C. zmin

?3 ,z无最大值     D. z 既无最大值也无最小值 3.已知双曲线的中心在原点,两个焦点F1,F2分别为(?5,0)和(5,0),点P在双曲线上,PF1⊥PF2,

且△PF1F2的面积为1,则双曲线的方程为

22A.x?y?1

23( ** )

22B.x?y?1

32x2C.?y2?1

42D.x2?y?1

44.设abc?0,则\ac?0\是方程ax2?by2?c为椭圆的( ** )

A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

5.已知向量a?(1,1,0),b?(?1,0,2),且ka?b与2a?b互相垂直,则实数k的值是( ** ) A.1 B.1 C. 3 D.7

5556.在正方体ABCD?A1BC中,E是棱A1B1的中点,则A1B与D1E所成角的余弦值为11D1( ** ) A.5 10 B.10 10 C.5 5 D.10 57.已知等比数列{an}中a2?1,则其前3项的和S3的取值范围是( ** ) A.???,?1? B.???,0??1,??? C.?3,??? D.???,?1??3,???

8.若椭圆mx2?ny2?1(m?0,n?0)与直线y?1?x交于A,B两点,过原点与线段AB中点的连线的斜率为2,则

2n的值是( ** ) m

A.223 2     B.     C.     D .2 922二.填空题(共6个小题,每小题5分,满分30分,把答案填在答题卷中相应的空格中) 9.已知A、B、C三点不共线,对平面ABC外一点O,给出下列表达式:

1OM?xOA?yOB?OC

3其中x,y是实数,若点M与A、B、C四点共面,则x+y= ** ** .

10.斜率为1的直线经过抛物线y2=4x的焦点,且与抛物线相交于A,B两点,则AB等于 **

** .

11.数列?an?是等差数列,a4?7,则S7= ** ** .

12.若命题P:“?x>0,则实数a的取值范围是 **** . ax?2?2x2?0”是真命题 ,13.如右图所示, 底面直径为12cm的圆柱被与底面成30的平面所截,其截口曲线是一个椭圆,则这个椭圆的离心率为 ** ** .

14.已知?AOB?90?,C为空间中一点,且?AOC??BOC?60?,则直线OC与平面AOB所成角的正弦值为___ ** ** ___.

三.解答题( 本大题共6小题,共80分。解答应写出必要的文字说明、证明过程和演算步骤。)

15.(12分) △ABC中,a、b、c分别是角A、B、C的对边,若(a?b?c)(b?c?a)?3bc. (Ⅰ)求角A的大小.

?(Ⅱ)若 0 ? x ? ,求y=cos2x+sinAsin2x的最大值和最小值.

2 16.(14分)如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②) (Ⅰ)求证AP∥平面EFG; (Ⅱ)求二面角G-EF-D的大小; (Ⅲ)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明.

17.(12分) 在数列{an}中,a1?1,2an?1?(1?)?an. (Ⅰ)证明数列{

1n2an}是等比数列,并求数列{an}的通项公式; 2n