¡¶ÎïÀí¹âѧÓëÓ¦Óùâѧ¡·Ï°Ìâ¼°Ñ¡½â£¨²¿·Ö£© ÏÂÔØ±¾ÎÄ

¡¶ÎïÀí¹âѧÓëÓ¦Óùâѧ¡·Ï°Ìâ¼°Ñ¡½â£¨²¿·Ö£©

µÚÒ»ÕÂ

? ϰÌâ

1-1. Ò»¸öÏ߯«Õñ¹âÔÚ²£Á§Öд«²¥Ê±£¬±íʾΪ£ºE?102cos(??1015?(ÂÊ¡¢²¨³¤£¬²£Á§µÄÕÛÉäÂÊ¡£

1-2. ÒÑÖªµ¥É«Æ½Ãæ¹â²¨µÄƵÂÊΪ??1014z?t))i£¬ÊÔÇó¸Ã¹âµÄƵ0.65cHz£¬ÔÚ

z = 0 Æ½ÃæÉÏÏàλÏßÐÔÔö¼ÓµÄÇé¿öÈçͼËùʾ¡£Çófx£¬ fy£¬ fz ¡£

1-3. ÊÔÈ·¶¨ÏÂÁи÷×é¹â²¨±íʾʽËù´ú±íµÄÆ«Õñ̬£º (1)Ex?E0sin(?t?kz)£¬Ey?E0cos(?t?kz); (2) Ex?E0cos(?t?kz)£¬

Ey?E0cos(?t?kz??4);

(3) Ex?E0sin(?t?kz)£¬Ey??E0sin(?t?kz)¡£ 1-4. ÔÚÍÖԲƫÕñ¹âÖУ¬ÉèÍÖÔ²µÄ³¤ÖáÓëxÖáµÄ¼Ð½ÇΪ?£¬ÍÖÔ²µÄ³¤¡¢¶ÌÖá¸÷Ϊ2a1¡¢2a2£¬Ex¡¢EyµÄÏàλ²îΪ?¡£ÇóÖ¤£ºtan2??2Ex0Ey0E2?E2x0y0cos?¡£

1-2ÌâÓÃͼ

1-5.ÒÑÖªÃáÅÆ²£Á§¶Ô0.3988?m²¨³¤¹âµÄÕÛÉäÂÊΪn = 1.52546£¬dn/d???1.26?10?1?m?1£¬Çó¹âÔڸò£Á§ÖеÄÏàËÙºÍȺËÙ¡£

1-6. ÊÔ¼ÆËãÏÂÃæÁ½ÖÖɫɢ¹æÂɵÄȺËÙ¶È£¨±íʾʽÖеÄv±íʾÊÇÏàËÙ¶È£©£º

(1)µçÀë²ãÖеĵç´Å²¨£¬v?c2?b2?2£¬ÆäÖÐcÊÇÕæ¿ÕÖеĹâËÙ£¬?ÊǽéÖÊÖеĵç´Å²¨²¨³¤£¬bÊdz£Êý¡£

(2)³äÂúɫɢ½éÖÊ£¨???(?)£¬???(?)£©µÄÖ±²¨µ¼¹ÜÖеĵç´Å²¨£¬vp?c?/?2???c2a2£¬ÆäÖÐcÕæ¿ÕÖеĹâËÙ£¬aÊÇÓ벨µ¼¹Ü½ØÃæÓйصij£Êý¡£

1-7. Çó´ÓÕÛÉäÂÊn = 1.52µÄ²£Á§Æ½°å·´ÉäºÍÕÛÉäµÄ¹âµÄÆ«Õñ¶È¡£ÈëÉä¹âÊÇ×ÔÈ»¹â£¬ÈëÉä½Ç·Ö±ðΪ0?£¬20?£¬45?£¬56?40?£¬90?¡£

1-8. ÈôÈëÉä¹âÊÇÏ߯«ÕñµÄ£¬ÔÚÈ«·´ÉäµÄÇé¿öÏ£¬ÈëÉä½ÇӦΪ¶à´ó·½ÄÜʹÔÚÈëÉäÃæÄÚÕñ¶¯ºÍ´¹Ö±ÈëÉäÃæÕñ¶¯µÄÁ½·´Éä¹â¼äµÄÏàλ²îΪ¼«´ó£¿Õâ¸ö¼«´óÖµµÈÓÚ¶àÉÙ£¿

1-9. µçʸÁ¿Õñ¶¯·½ÏòÓëÈëÉäÃæ³É45¡ãµÄÏ߯«Õñ¹â£¬ÈëÉäµ½Á½ÖÖ͸Ã÷½éÖʵķֽçÃæÉÏ£¬ÈôÈëÉä½Ç

?1?50?£¬n1 = 1£¬n2 = 1.5£¬Ôò·´Éä¹âµÄ¹âʸÁ¿ÓëÈëÉäÃæ³É¶à´óµÄ½Ç¶È£¿Èô?1?60?ʱ£¬¸Ã½Ç¶ÈÓÖΪ¶à

´ó£¿

1-10. ÈôҪʹ¹â¾­ºì±¦Ê¯£¨n = 1.76£©±íÃæ·´Éäºó³ÉΪÍêȫƫÕñ¹â£¬ÈëÉä½ÇÓ¦µÈÓÚ¶àÉÙ£¿ÇóÔÚ´ËÈëÉä½ÇµÄÇé¿öÏ£¬ÕÛÉä¹âµÄÆ«Õñ¶ÈPt ¡£

1-11. ÈçͼËùʾ£¬¹âÏß´©¹ýƽÐÐÆ½°å£¬ÓÉn1½øÈën2µÄ½çÃæÕñ·ù·´ÉäϵÊýΪr£¬Í¸ÉäϵÊýΪt£¬Ï±íÃæµÄÕñ·ù·´ÉäϵÊýΪr'£¬Í¸ÉäϵÊýΪt'¡£ÊÔÖ¤Ã÷£ºÏàÓ¦ÓÚÆ½Ðкʹ¹Ö±ÓÚÍ¼ÃæÕñ¶¯µÄ¹â·ÖÁ¿ÓУº¢Ùr???r?'£¬¢Úr//??r//'£¬¢Ût??t?'?r?2?1£¬¢Ür//2?t//?t//'?1£¬¢Ý1?r//?r//'?t//?t//'¡£

1-12. Ò»Êø×ÔÈ»¹â´Ó¿ÕÆø´¹Ö±ÈëÉäµ½²£Á§±íÃæ£¬ÊÔ¼ÆËã²£Á§±íÃæµÄ·´ÉäÂÊR0 = £¿´Ë·´ÉäÂÊR0Óë·´Éä¹â²¨³¤ÊÇ·ñÓйأ¿ÎªÊ²Ã´£¿Èô¹âÊøÒÔ45¡ã½ÇÈëÉ䣬Æä·´ÉäÂÊR45 = £¿ÓÉ´Ë˵Ã÷·´ÉäÂÊÓëÄÄЩÒòËØÓйأ¨Éè²£Á§ÕÛÉäÂÊΪ1.52£©£¿

1-13. ÈçͼËùʾ£¬µ±¹â´Ó¿ÕÆøÐ±ÈëÉ䵽ƽÐÐÆ½Ãæ²£Á§Æ¬ÉÏʱ£¬´ÓÉÏ¡¢Ï±íÃæ·´ÉäµÄ¹âR1ºÍR2Ö®¼äÏàλ¹ØÏµÈçºÎ£¿ËüÃÇÖ®¼äÊÇ·ñÓи½¼ÓµÄ¡°°ë²¨³Ì²î¡±£¿¶ÔÈëÉä½Ç´óÓÚºÍСÓÚ²¼ÈåË¹ÌØ½ÇµÄÁ½ÖÖÇé¿ö·Ö±ð½øÐÐÌÖÂÛ¡£

1-13ÌâÓÃͼ

1-14ÌâÓÃͼ

1-14. ÈçͼËùʾµÄÒ»¸ùÔ²ÖùÐιâÏË£¬ÏËоÕÛÉäÂÊΪn1£¬°ü²ãÕÛÉäÂÊΪn2£¬ÇÒn1 > n2£¬

£¨1£©Ö¤Ã÷ÈëÉä¹âµÄ×î´ó¿×¾¶½Ç2u£¨±£Ö¤¹âÔÚÏËоºÍ°ü²ã½çÃæ·¢ÉúÈ«·´É䣩Âú×ã¹ØÏµÊ½£º

22 sinu?n1?n2

£¨2£©Èôn1 = 1.62£¬n2 = 1.52£¬Çó×î´ó¿×¾¶½Ç2u = ?

? ²¿·ÖϰÌâ½â´ð

a2aa12a1a22tan???1-4. Ö¤£ºÓÉͼ¿ÉÒÔ¿´³ö£ºtan??2, ËùÒÔ£ºtan2??

a11?tan2?1?(a2)2a12?a22a122?? ÈôÒªÇóÖ¤ tan2Ex0Ey0co?s2E2?Ex0y0£¬¿ÉÒÔ°´ÒÔÏ·½·¨¼ÆË㣺

st(??)??Ex?Ex0co? Éè ? ¿ÉµÃ£º

E?Eco?st)(?y0?y

Ey2EEEy 2(x)2?()?2xco?s?sin? Ex0Ey0Ex0Ey0

??Ex?Ex'cos??Ey'sin? ½øÐÐ×ø±ê±ä»»£º?

E?E'sin??E'cos??xy?y

´úÈëÉÏÃæµÄÍÖÔ²·½³Ì£º

(Ex'2cos2??Ey'2sin2??2Ex'Ey'sin?cos?)E2y0

?(Ex'2sin2??Ey'2cos2??2Ex'Ey'sin?cos?)E2x0

?2(Ex'2sin?cos??Ey'2sin?cos??Ex'Ey'cos2??Ex'Ey'sin2?)Ex0Ey0cos??E2E2sin2?x0y01-4ÌâÓÃͼ

?(Ex'2sin2??Ey'2cos2??Ex'Ey'sin2?)E2(Ex'2cos2??Ey'2sin2??Ex'Ey'sin2?)E2x0y0?((Ex'2?Ey'2)sin2??2Ex'Ey'cos2?)Ex0Ey0cos??E2E2sin2? x0y022222222Ex'2(E2cos??Esin??EEsin2?cos?)?E'(Esin??Ecos??Ex0Ey0sin2?cos?) x0y0yy0x0y0x0Ex'Ey'((E2?E2)sin2??2Ex0Ey0cos2?cos?)?E2E2sin2? x0y0x0y02?E)sin2??2Ex0Ey0cos2?cos??0ʱ£¬¼´½»²æÏîϵÊýΪÁãʱ£¬ÕâʱµÄEx'¡¢Ey'Öá¼´ ÔÚ(E2x0y0ΪÍÖÔ²µÄ³¤ÖáºÍ¶ÌÖá¡£

2?E)sin2??2Ex0Ey0cos2?cos??0 ½âµÃ£º ÓÉ(E2x0y0 tan2??2Ex0Ey0Ex0?Ey022cos?

1-11. Ö¤£ºÒÀÕÕFresnel's Fomula£¬

Er0ptan(?1??2)Er0ssin(?1??2)?? ?Ei0ssin(?1??2)Ei0ptan(?1??2)EEt0s2cos?1sin?22cos?1sin?2? t0p? Ei0ssin(?1??2)Ei0psin(?1??2)cos(?1??2) ¢Ù¡¢¢ÚÒÀ¾ÝÌâÒ⣬½éÖÊÆ½°å´¦ÔÚͬһÖÖ½éÖÊÖУ¬ÓÉFresnel's FomulaµÄǰÁ½Ï¿ÉÒÔ¿´³ö²»ÂÛ´Ó½éÖÊ1µ½½éÖÊ2£¬»¹ÊÇÓɽéÖÊ2µ½½éÖÊ1µÄ·´É䣬ÈëÉä½ÇºÍÕÛÉä½Çµ÷»»Î»ÖúóÕñ·ù·´ÉäÂÊ´óС²»±ä£¬Òª³öÒ»¸ö¸ººÅ£¬ËùÒÔr???r?'£¬r//??r//'¡£ ¢Ût??t?'? r?22cos?1sin?22cos?2sin?1sin2?1sin2?2?=

sin(?1??2)sin(?1??2)sin2(?1??2)2sin(?1??2)(si?ns2?co?s1si?n2)21co??? 2si2n(?1??2)sin(?1??2)sin2?1cos2?2?cos2?1sin2?2?2sin?1cos?2cos?1sin?2 ? 2sin(?1??2)(sin?1cos?2?cos?1sin?2)2?4sin?1cos?2cos?1sin?2 ?

sin2(?1??2)sin2(?1??2)?sin2?1sin2?2 ?

sin2(?1??2) ?1? ¢Üt//?t//'= r//2sin2?1sin2?2= 1£­t??t?'£¬ ËùÒÔ t??t?'?r?2?1¡£ 2sin(?1??2)2cos?1sin?22cos?2sin?1sin2?1sin2?2? ?sin(?1??2)cos(?1??2)sin(?1??2)cos(?2??1)sin2(?1??2)cos2(?1??2)tan2(?1??2)sin2(?1??2)cos2(?1??2) ??tan2(?1??2)sin2(?1??2)cos2(?1??2)2 1?r//sin2(?1??2)cos2(?1??2)?sin2(?1??2)cos2(?1??2) ?22sin(?1??2)cos(?1??2)4(sin2?1sin?2cos?2?sin?2cos2?1cos?2)(sin?1cos2?2cos?1?cos?1sin?1sin2?2) ?

sin2(?1??2)cos2(?1??2) ?4sin?2cos?2sin?1cos?1sin2?2sin2?1??t//?t//'£¬ ËùÒÔ r//2?t//?t//'?1¡£ 2222sin(?1??2)cos(?1??2)sin(?1??2)cos(?1??2) ¢ÝÒòΪr//??r//'£¬ ËùÒÔr//?r//'??r//2?t//?t//'?1£¬ ¼´µÃ£º1?r//?r//'?t//?t//' Ò²¿ÉÒÔ°´ÉÏÊö·½·¨¼ÆË㣺

2tan?1(??2)tan?(tan(?1??2)sin2?1sin2?22??1)??? r//?r//'? ??22?(tan?1(??2)tansin(?1??2)co2s(?1??2)tan(?1??2)2??1)

1-14. £¨1£©Ö¤£ºÓÉn0sinu?n1sin?1£¬µÃ?1?arcsin(n0sinu)£¬¶ø?c?90???1£¬ n1s1£¬¼´¿ÉµÃµ½£º1?( sin?c?sin(90???1)?co?n0nsinu)2?2ʱÔÚ¹âÏËÄÚ±íÃæÉÏ·¢ÉúÈ«·´É䣬 n1n1n12?n22 ½âµÃ£ºsinu?£¬ÔÚ¿ÕÆøÖÐn0 = 1¡£

n022£¨2£©½â£ºsinu?n1?n2?1.622?1.522?0.56036£¬u = 34.080¡ã£¬ 2u = 68.160¡ã¡£