PVC搪塑 聚氨酯喷涂成型表皮(PU SPRAY) 下载本文

汽车仪表板骨架刚度由仪表板骨架本身的刚度和仪表板骨架在车身上的安装刚度共同决定。对于仪表板骨架本身的刚度,鉴于转向管柱的安装方式,转向管柱的安装支架的设计好坏直接影响到仪表板骨架本身的刚度,所以转向管柱的安装支架的设计很重要。此外,仪表板骨架中的横梁与A柱连接处的接头刚度,横梁与前地板的连接形式,横梁与防火墙的搭接设计均会对仪表板骨架本身的刚度有影响。

汽车仪表板骨架在车身上的安装点比较多,一般有十多个,每个安装点的一般只关注三个平动方向的刚度就可以了。每个安装点的刚度对系统刚度的贡献量不一样,同一个安装点的不同方向的刚度对系统刚度的贡献量也不一样。对贡献量大的安装点的刚度、对贡献量大的方向,需要在设计之初有一个充分的认识,进而便于下一步采取有效的结构形式来尽量满足仪表板骨架在车身上的安装刚度要求。

为了降低油耗和减少制造成本,减重是当务之急。当整个系统的构架已经完成,每个零件的形状以及与周边零件的连接都已经确定,这时可通过对仪表板骨架这一子系统各个零件的厚度进行优化设计,在不降低性能的基础上,进一步减重。

图2 仪表板骨架结构 3 优化分析

下面就从影响汽车仪表板骨架刚度的几个主要方面来对汽车仪表板骨架进行优化分析设计。

3.1 转向管柱安装支架的优化

转向管柱安装支架的优化模型没有考虑车身,与车身连接的地方约束住。 (1) 在原始设计结构的基础上进行拓扑优化,整个上下支架均为优化区域。

目标是:上下支架质量最小;

约束是:反映刚度的位移小于原始结构位移的 1.05倍,以确保一定的优化余量; 优化参数是:上下支架的壳单元的密度。 结果见图3

图3 转向管柱安装支架的拓扑优化结果

拓扑优化结果中,浅兰色的区域为趋向保留的材料,ISO surface 取 0.3。 (2) 在原始设计结构的基础上对支架进行形状优化。 目标是:反映刚度的位移最小; 没有约束;

优化的参数是:上支架某形状的线性变化因子。 结果见图4

图4 转向管柱安装支架的形状优化结果

图5 转向管柱安装支架新设计 形状优化刚度能提高 7.8%。

通过上面转向管柱安装支架的拓扑优化和形状优化的结果,可以看到: 支架两边的材料比较重要,而中间的可以挖减重孔,甚至可以把中间的材料全部去掉;

支架前后过渡越缓,对性能越有利。

根据优化结果,将转向管柱安装支架设计成分体式,见图5,新的设计刚度提高了5%,质量减少了 0.95Kg。 3.2 仪表板骨架在车身上的安装刚度的优化

首先算出现有结构仪表板骨架在车身上的安装刚度值。然后每一个安装点用一个 cbush来模拟,cbush的 x,y,z向的初始刚度分别设置为已经算出的刚度值,不考虑cbush的转动刚度。最后对每一个安装点的cbush的三个方向的刚度值进行优化。

用不考虑转动刚度的cbush来代替车身结构算仪表板骨架刚度,两者的刚度值差别仅有0.7%,这说明用 cbush来模拟是正确的。

本文采用尺寸优化方法优化安装刚度。首先用 DESVAR卡片来定义优化变量,每个安装点,每个方向的初始刚度定义为现有结构计算出的安装刚度,下限定义为 0.5KN/mm,上限定义为 20.0KN/mm。然后用 DVPREL1来定义与优化变量相关的属性,属性是用一个优化变量的函数来定义,定义如下:

P为要优化的属性,Ciw为与优化变量相关的线性比例,DVi为优化变量。本文优化时C0取零,Ci取 1.0。

用DEQATN卡片来定义一个公式,然后用DRESP2卡片定义一个与公式相关的新变量,此变量为所要优化变量之和,此变量用以定义cbush各方向的刚度值的总和。

Table 1安装刚度优化结果 目标是:反映刚度的位移最小;