流体力学习题答案2分解 下载本文

5-22.如图所示管路,设其中的流量QA?0.6m3/s,??0.02,不计局部损失。其它已各条件如,求A、D二点间的水头损失。

??解??hABlv2lQ2l0.621000120?42???????0.02????7.67m232??d2gd2gAd2g(0.62)20.62g(0.6)20.62g?44BC段的损失为hBC?SQ2

1111 ???SS4S2S3l8?0.02?1100S2?2d??344

?d4g?2?0.354?g?0.358?l8?0.02?800S3?2d??538 424?dg??0.35?g?0.358?l8?0.02?900S4?2d??144

?d4g?2?0.354?g?0.358?1111111???????0.0833?0.0432?0.054?0.18 S1445383441223.218.5所以S?(12)?31 0.18hAB?31?0.62?11.15m

5

hCD150042?0.6230?16?0.36?0.02???5.3m

0.72g?2?0.740.75?2g?2hAD?hAB?hBC?hCD?7.67?11.15?5.3?24.12m

5-25.三层供水管路,各管段的S值均为,层高为5m。设a点的压力水头20m,求Q1、Q2、

Q3,并比较三流量,得出结论来。

2??解??h1?SQ1?H

Q?H20?4m3 ??4.46?108sS110以二、三层楼分支点,分别写能量方程,设分支点水头为H1

2则 对二层H1?S1Q2 Q2?H1 S1H1?5 2S12对三层H1?5?2S1Q3 Q3?写上述分支点,a点的能量方程

H?H1?5?S1(Q2?Q3)2

H1?H?5?S1(Q2?Q3)2?15?S1(Q2?Q3)2

上式代入Q2及Q3,则

H1?H?5?S1(HH1H1H1?52?)?15?S1(1?2S1S1S12S1H1?5H1?52?) 2S12S1 6

?15?H1?2H1(H1?5)H1?5353H1H1(H1?5) ????222222353H1??H1)H1(H1?5)355H22???1

2244(?352355H12355H1(5H1)2?H1(H1?5)?2(?)?2?2?2???? 2444444??H12?5H1?1(352?350H1?25H12) 327H12?10H1?352?0 H1?14m Q2?Q3?14?4m3 ?3.74?108s10H1?5?2S194.5?4m3??2.12?10s 2?108108Q1?Q2?Q3

6-2:某体育馆的圆柱形送风口,d0?0.6m,风口距赛区为60m,要求比赛区风速(质量平均风速)不得超过0.3m,求送风口的送风量应不超过多少m3ss?

??解??sn?0.672r0.30?0.672??2.52ma0.0860?2.52所以,计算断面在主体段,a值为0.08

v20.23?v0aS?0.147d00.30.23?0.08?60v0?0.1470.6?v0?10.63ms??Q?v0?

?4d02?10.63??4?0.62?3m3/s7

6-3:岗位送风所设风口向下,距地面4m。要求在工作区(距地1.5m高范围)造成直径为1.5m的射流,限定轴心速度为2m.求喷嘴直径及风口流量。

s ??解??采用圆形喷嘴a?0.08

DaS1.50.08?2.5?6.8(?0.147)??6.8(?0.147)d0d0d0d0 ?d0?0.14mSn?0.672r00.07?0.672??0.588?S?2.5,为主体段。 a0.08vm0.4820.48???v0aS?0.147v00.08?2.5?0.147d00.14?v0?6.56m?Q?v0?s

?4d02?6.56??4?0.142?0.101m3/ss速度向房间水平送风,送风温度

6-9:高出地面5m处设一孔口d0?0.1m,以2mt0??100C,室内温度te?270C。试求距出口3m处的v2、t2及弯曲轴心坐标。

?T2T2?Tet?2727?t20.230.230.23??2????aS0.08?3?T1T0?Te?10?2737?0.147?0.1472.547 d00.1?t2?23.7Cy??g?T0a32(0.51S?0.35S) 2v0Ted0??解??

?9.8???273?10??(273?27)??22(273?27)(0.510.083?3?0.35?32) 0.1??4.28mv2v0.230.23??2?v0aS?0.14720.08?3?0.147 d00.1?v2?0.181m

8

s