¶ÔÓÚ¿íÆ½Îȹý³ÌÀ´Ëµ£¬ÓÐÏÂÁÐWiener-Khinchin¶¨Àí
¶¨Àí4.1(Wiener-Khinchin¶¨Àí) ÈôX(t)Ϊ?ÉÏµÄ¿íÆ½Îȹý³Ì£¬ÇÒÆä×ÔÏà¹Øº¯Êý
RX(t)Âú×㨰£¤-?tR(t)dt£¤£¬ÔòÓÐ
j2pft
SX(f)=¨°-?RX(t)e-dt
Ö¤Ã÷ Óɹ¦ÂÊÆ×Ãܶȵ͍Òåʽ֪
SX(f)=limT=limT=limTT=lim
1éùTéùT-j2pft1-j2pft2EêúX(t)edtX(t)edt2êú112òò-T-T2TëûëûT1E¨°X(t1)X*(t2)e-j2pf(t1-t2)dt1dt2-T2T1TT*-j2pf(t1-t2)E{X(t)X(t)}edt1dt212-T-T2Tòò1TT-j2pf(t1-t2)R(t-t)edt1dt2X12-T-T2Tòò{{}}Èçͼ4.2Ëùʾ£¬¶Ô»ý·ÖÇøÓò×÷±ä»»
t=t1-t2,t2=s£¬Ôò
1SX(f)=limT2T{òòR0-2TX(t)e-j2pftdtT-Tds+R(t)eòò02T-j2pftdtT-t-Tds}=-j2pftTlim12T{òò0-2TRX(t)e(2T+t)dt+=ìæïïïïíý¨°2TRX(t)e-j2pftïï?Tlim12Tïï1îþ-2T??èø-|t|öü¡Â2T¡Â¡Â¡Âdt=¨°£¤-?RX(t)e-j2pftdt
2Tft0R(t)e-j2p(2T-t)dt}ÓÚÊǶ¨ÀíµÃÖ¤¡£