ÔÚMATLABÖУ¬¶ÔÓÚÁ¬ÐøLTIϵͳµÄ³å¼¤ÏìÓ¦ºÍ½×Ô¾ÏìÓ¦£¬¿É·Ö±ðÓÿØÖÆϵͳ¹¤¾ßÏäÌṩµÄº¯ÊýimpluseºÍstepÀ´Çó½â¡£Æäµ÷ÓøñʽΪ y=impluse(sys,t) y=step(sys,t)
ʽÖУ¬t±íʾ¼ÆËãϵͳÏìÓ¦µÄ³éÑùµãÏòÁ¿£¬sysÊÇLTIϵͳģÐÍ¡£ Àý3-2ÒÑ֪ijLTIϵͳµÄ΢·Ö·½³ÌΪ y¡¯¡¯(t)+ 2y¡¯(t)+100y(t)=10f(t)
ÇóϵͳµÄ³å¼¤ÏìÓ¦ºÍ½×Ô¾ÏìÓ¦µÄ²¨ÐÎ. ½â£ºts=0;te=5;dt=0.01; sys=tf([10],[1,2,100]);
t=ts:dt:te;
h=impulse(sys,t); figure; plot(t,h);
xlabel('Time(sec)'); ylabel('h(t)');
g=step(sys,t); figure; plot(t,g);
xlabel('Time(sec)');
ylabel('g(t)');
3. ÓÃMATLABʵÏÖÁ¬Ðøʱ¼äÐźŵľí»ý
Ðźŵľí»ýÔËËãÓзûºÅËã·¨ºÍÊýÖµËã·¨£¬´Ë´¦²ÉÓÃÊýÖµ¼ÆËã·¨£¬Ðèµ÷ÓÃMATLAB µÄconv( )º¯Êý½üËƼÆËãÐźŵľí»ý»ý·Ö¡£Á¬ÐøÐźŵľí»ý»ý·Ö¶¨ÒåÊÇ f(t)?f1(t)?f2(t)?????f1(?)f2(t??)d?
Èç¹û¶ÔÁ¬ÐøÐźÅf1(t)ºÍf2(t)½øÐеÈʱ¼ä¼ä¸ô?¾ùÔȳéÑù£¬Ôòf1(t)ºÍf2(t)·Ö±ð±äΪÀëɢʱ¼äÐźÅf1(m?)ºÍf2(m?)¡£ÆäÖУ¬mΪÕûÊý¡£µ±?×㹻Сʱ£¬f1(m?)ºÍf2(m?)¼ÈΪÁ¬Ðøʱ¼äÐźÅf1(t)ºÍf2(t)¡£Òò´ËÁ¬Ðøʱ¼äÐźží»ý»ý·Ö¿É±íʾΪ
f(t)?f1(t)?f2(t)??f1(?)f2(t??)d?????lim??0m????f(m?)?f1?
2(t?m?)??²ÉÓÃÊýÖµ¼ÆËãʱ£¬Ö»Çóµ±t?n?ʱ¾í»ý»ý·Öf(t)µÄÖµf(n?)£¬ÆäÖУ¬nΪÕûÊý£¬¼È
f(n?)?
m?????f(m?)?f1m????2(n??m?)??
???f1(m?)?f2[(n?m)?]9
ÆäÖУ¬
m????f(m?)?f1?2[(n?m)?]ʵ¼Ê¾ÍÊÇÀëÉ¢ÐòÁÐf1(m?)ºÍf2(m?)µÄ¾í»ýºÍ¡£µ±?×ã
¹»Ð¡Ê±£¬ÐòÁÐf(n?)¾ÍÊÇÁ¬ÐøÐźÅf(t)µÄÊýÖµ½üËÆ£¬¼È f(t)?f(n?)??[f1(n)?f2(n)]
ÉÏʽ±íÃ÷£¬Á¬ÐøÐźÅf1(t)ºÍf2(t)µÄ¾í»ý£¬¿ÉÓø÷×Ô³éÑùºóµÄÀëɢʱ¼äÐòÁеľí»ýÔÙ³ËÒÔ³éÑù¼ä¸ô?¡£³éÑù¼ä¸ô?ԽС£¬Îó²îԽС¡£
Àý3-3ÓÃÊýÖµ¼ÆËã·¨Çóf1(t)?u(t)?u(t?2)Óëf2(t)?e?3tu(t)µÄ¾í»ý»ý·Ö¡£
½â£ºÒòΪf2(t)?e?3tu(t)ÊÇÒ»¸ö³ÖÐøʱ¼äÎÞÏÞ³¤µÄÐźţ¬¶ø¼ÆËã»úÊýÖµ¼ÆËã²»¿ÉÄܼÆËãÕæÕýµÄÎÞÏÞ³¤Ðźţ¬ËùÒÔÔÚ½øÐÐf2(t)µÄ³éÑùÀëÉ¢»¯Ê±£¬ËùÈ¡µÄʱ¼ä·¶Î§ÈÃf2(t)Ë¥¼õµ½×㹻С¾Í¿ÉÒÔÁË£¬±¾ÀýÈ¡t?2.5¡£³ÌÐòÊÇ dt=0.01; t=-1:dt:2.5;
f1=Heaviside(t)-Heaviside(t-2); f2=exp(-3*t).*Heaviside(t);
f=conv(f1,f2)*dt; n=length(f); tt=(0:n-1)*dt-2; subplot(221), plot(t,f1), grid on;
axis([-1,2.5,-0.2,1.2]); title('f1(t)'); xlabel('t') subplot(222), plot(t,f2), grid on;
axis([-1,2.5,-0.2,1.2]); title('f2(t)'); xlabel('t') subplot(212), plot(tt,f), grid on; title('f(t)=f1(t)*f2(t)'); xlabel('t')
ÓÉÓÚf1(t)ºÍf2(t)µÄʱ¼ä·¶Î§¶¼ÊÇ´Ót=-1¿ªÊ¼£¬ËùÒÔ¾í»ý½á¹ûµÄʱ¼ä·¶Î§´Ó t=-2¿ªÊ¼£¬ÔöÁ¿»¹ÊÇÈ¡Ñù¼ä¸ô?£¬Õâ¾ÍÊÇÓï¾ätt=(0:n-1)*dt-2µÄÓÉÀ´¡£ Èý¡¢ÉÏ»úʵÑéÄÚÈÝ
1£® µ÷ÊÔʵÑéÔÀíÖÐËùÊöµÄÏà¹Ø³ÌÐò¡£
2£® ÒÑÖªÃèÊöϵͳµÄ΢·Ö·½³ÌºÍ¼¤ÀøÐźÅf(t)ÈçÏ£¬ÊÔÓýâÎö·¨ÇóϵͳµÄÁã״̬ÏìÓ¦y(t)£¬²¢ÓÃMATLAB»æ³öϵͳÁã״̬ÏìÓ¦µÄʱÓò·ÂÕ沨ÐΣ¬ÑéÖ¤½á¹ûÊÇ·ñÏàͬ y¡¯¡¯(t)+ 4y¡¯(t)+4y(t)=f¡¯(t)+3f(t) f(t)= exp(-t)u(t)
3£®ÒÑÖªÃèÊöϵͳµÄ΢·Ö·½³ÌÈçÏ£¬ÊÔÓÃMATLABÇóϵͳÔÚ0~10Ã뷶ΧÄڳ弤ÏìÓ¦ºÍ½×Ô¾ÏìÓ¦µÄÊýÖµ½â£¬²¢Óûæ³öϵͳ³å¼¤ÏìÓ¦ºÍ½×Ô¾ÏìÓ¦µÄʱÓò²¨ÐÎ
y¡¯¡¯(t)+3y¡¯(t)+2y(t)=f(t) y¡¯¡¯(t)+ 2y¡¯(t)+2y(t)=f¡¯(t) 4£®»³öÐźží»ý»ý·Öf1(t)?f2(t)µÄ²¨ÐΣ¬f1(t)?f2(t)?u(t)?u(t?1)
10
ʵÑéÈý ¸µÀïÒ¶±ä»»¡¢ÏµÍ³µÄƵÓò·ÖÎö
£¨Éè¼ÆÐÍ£©
Ò»¡¢ ʵÑéÄ¿µÄ
1¡¢Ñ§»áÓÃMATLABʵÏÖÁ¬Ðøʱ¼äÐźŸµÀïÒ¶±ä»» 2¡¢Ñ§»áÓÃMATLAB·ÖÎöLTIϵͳµÄƵÓòÌØÐÔ 3¡¢Ñ§»áÓÃMATLAB·ÖÎöLTIϵͳµÄÊä³öÏìÓ¦ ¶þ¡¢ÊµÑéÔÀí
1£®¸µÀïÒ¶±ä»»µÄMATLABÇó½â
MATLABµÄsymbolic Math Toolbox ÌṩÁËÖ±½ÓÇó½â¸µÀïÒ¶±ä»»¼°Äæ±ä»»µÄº¯Êýfourier()¼°ifourier()Á½Õߵĵ÷ÓøñʽÈçÏ¡£ Fourier ±ä»»µÄµ÷Óøñʽ
F=fourier(f)£ºËüÊÇ·ûºÅº¯ÊýfµÄfourier±ä»»Ä¬ÈÏ·µ»ØÊǹØÓÚwµÄº¯Êý¡£
F=fourier(f£¬v):Ëü·µ»Øº¯ÊýFÊǹØÓÚ·ûºÅ¶ÔÏóvµÄº¯Êý£¬¶ø²»ÊÇĬÈϵÄw£¬¼´
F(v)??????f(x)e?jvxdx
FourierÄæ±ä»»µÄµ÷Óøñʽ
f=ifourier(F):ËüÊÇ·ûºÅº¯ÊýFµÄfourierÄæ±ä»»£¬Ä¬ÈϵĶÀÁ¢±äÁ¿Îªw£¬Ä¬ÈÏ·µ»ØÊÇ
¹ØÓÚxµÄº¯Êý¡£
f=ifourier(f,u):ËüµÄ·µ»Øº¯ÊýfÊÇuµÄº¯Êý£¬¶ø²»ÊÇĬÈϵÄx.
×¢Ò⣺ÔÚµ÷Óú¯Êýfourier()¼°ifourier()֮ǰ£¬ÒªÓÃsymsÃüÁî¶ÔËùÓõ½µÄ±äÁ¿£¨Èçt,u,v,w£©½øÐÐ˵Ã÷,¼´½«ÕâЩ±äÁ¿ËµÃ÷³É·ûºÅ±äÁ¿¡£ Àý4-1 Çóf(t)?e?2tµÄ¸µÁ¢Ò¶±ä»»
½â: ¿ÉÓÃMATLAB½â¾öÉÏÊöÎÊÌ⣺ syms t
Fw=fourier(exp(-2*abs(t)))
Àý4-2 ÇóF(jw)?1µÄÄæ±ä»»f(t) 1??2½â£º ¿ÉÓÃMATLAB½â¾öÉÏÊöÎÊÌâ syms t w
ft=ifourier(1/(1+w^2),t)
2£®Á¬Ðøʱ¼äÐźŵÄƵÆ×ͼ
Àý4-3 Çóµ÷ÖÆÐźÅf(t)?AG?(t)cos?0tµÄƵÆ×£¬Ê½ÖÐ
A?4,?0?12?,??1??,G?(t)?u(t?)?u(t?) 222½â£ºMATLAB³ÌÐòÈçÏÂËùʾ
ft=sym('4*cos(2*pi*6*t)*(Heaviside(t+1/4)-Heaviside(t-1/4))');
11
Fw=simplify(fourier(ft)) subplot(121)
ezplot(ft,[-0.5 0.5]),grid on subplot(122)
ezplot(abs(Fw),[-24*pi 24*pi]),grid
ÓÃMATLAB·ûºÅËã·¨Çó¸µÀïÒ¶±ä»»ÓÐÒ»¶¨¾ÖÏÞ£¬µ±ÐźŲ»ÄÜÓýâÎöʽ±í´ïʱ£¬»áÌáʾ³ö´í£¬ÕâʱÓÃMATLABµÄÊýÖµ¼ÆËãÒ²¿ÉÒÔÇóÁ¬ÐøÐźŵĸµÀïÒ¶±ä»»£¬¼ÆËãÔÀíÊÇ
F(j?)??f(t)e????j?tdt?lim?f(n?)e?j?n??
??0n????µ±?×㹻Сʱ£¬½üËƼÆËã¿ÉÂú×ãÒªÇó¡£ÈôÐźÅÊÇʱÏ޵ģ¬»òµ±Ê±¼ä´óÓÚij¸ö¸ø¶¨ÖµÊ±£¬ÐźÅÒÑË¥¼õµÄºÜÀ÷º¦£¬¿ÉÒÔ½üËƵؿ´³ÉʱÏÞÐźÅʱ£¬nµÄÈ¡Öµ¾ÍÊÇÓÐÏ޵ģ¬ÉèΪN£¬ÓÐ
F(k)??f(n?)e?j?kn??n?0N?1,0?k?N,?k?2?k ÊÇƵÂÊÈ¡Ñùµã N?ʱ¼äÐźÅÈ¡Ñù¼ä¸ô?ӦСÓÚÄοü˹ÌØÈ¡Ñùʱ¼ä¼ä¸ô£¬Èô²»ÊÇ´øÏÞÐźſɸù¾Ý¼ÆË㾫¶ÈÒªÇóÈ·¶¨Ò»¸öƵÂÊ W0ΪÐźŵĴø¿í¡£
Àý4-4 ÓÃÊýÖµ¼ÆËã·¨ÇóÐźÅf(t)?u(t?1)?u(t?1)µÄ¸µÀïÒ¶±ä»»
½â£¬ÐźÅƵÆ×ÊÇF(j?)?2Sa(?)£¬µÚÒ»¸ö¹ýÁãµãÊÇ?£¬Ò»°ã½«´ËƵÂÊÊÓΪÐźŵĴø¿í£¬Èô½«¾«¶ÈÌá¸ßµ½¸ÃÖµµÄ50±¶£¬¼ÈW0=50?£¬¾Ý´ËÈ·¶¨È¡Ñù¼ä¸ô£¬??R=0.02;t=-2:R:2;
f=Heaviside(t+1)-Heaviside(t-1); W1=2*pi*5;
N=500;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F);
W=[-fliplr(W),W(2:501)]; F=[fliplr(F),F(2:501)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('f(t)'); title('f(t)=u(t+1)-u(t-1)'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('f(t)µÄ¸¶Êϱ任F(w)');
3£®ÓÃMATLAB·ÖÎöLTIϵͳµÄƵÂÊÌØÐÔ
µ±ÏµÍ³µÄƵÂÊÏìÓ¦H£¨jw£©ÊÇjwµÄÓÐÀí¶àÏîʽʱ£¬ÓÐ
1?0.02 2F0jwM)?1?L?b1jw(?)b0B(w)bM(jw)M?bM?1( H(jw)? ?NN?1A(w)aN(jw)?aN?1(jw)?L?a1(jw)?a012