信号与系统实验(MATLAB版) (1) 下载本文

在MATLAB中,对于连续LTI系统的冲激响应和阶跃响应,可分别用控制系统工具箱提供的函数impluse和step来求解。其调用格式为 y=impluse(sys,t) y=step(sys,t)

式中,t表示计算系统响应的抽样点向量,sys是LTI系统模型。 例3-2已知某LTI系统的微分方程为 y’’(t)+ 2y’(t)+100y(t)=10f(t)

求系统的冲激响应和阶跃响应的波形. 解:ts=0;te=5;dt=0.01; sys=tf([10],[1,2,100]);

t=ts:dt:te;

h=impulse(sys,t); figure; plot(t,h);

xlabel('Time(sec)'); ylabel('h(t)');

g=step(sys,t); figure; plot(t,g);

xlabel('Time(sec)');

ylabel('g(t)');

3. 用MATLAB实现连续时间信号的卷积

信号的卷积运算有符号算法和数值算法,此处采用数值计算法,需调用MATLAB 的conv( )函数近似计算信号的卷积积分。连续信号的卷积积分定义是 f(t)?f1(t)?f2(t)?????f1(?)f2(t??)d?

如果对连续信号f1(t)和f2(t)进行等时间间隔?均匀抽样,则f1(t)和f2(t)分别变为离散时间信号f1(m?)和f2(m?)。其中,m为整数。当?足够小时,f1(m?)和f2(m?)既为连续时间信号f1(t)和f2(t)。因此连续时间信号卷积积分可表示为

f(t)?f1(t)?f2(t)??f1(?)f2(t??)d?????lim??0m????f(m?)?f1?

2(t?m?)??采用数值计算时,只求当t?n?时卷积积分f(t)的值f(n?),其中,n为整数,既

f(n?)?

m?????f(m?)?f1m????2(n??m?)??

???f1(m?)?f2[(n?m)?]9

其中,

m????f(m?)?f1?2[(n?m)?]实际就是离散序列f1(m?)和f2(m?)的卷积和。当?足

够小时,序列f(n?)就是连续信号f(t)的数值近似,既 f(t)?f(n?)??[f1(n)?f2(n)]

上式表明,连续信号f1(t)和f2(t)的卷积,可用各自抽样后的离散时间序列的卷积再乘以抽样间隔?。抽样间隔?越小,误差越小。

例3-3用数值计算法求f1(t)?u(t)?u(t?2)与f2(t)?e?3tu(t)的卷积积分。

解:因为f2(t)?e?3tu(t)是一个持续时间无限长的信号,而计算机数值计算不可能计算真正的无限长信号,所以在进行f2(t)的抽样离散化时,所取的时间范围让f2(t)衰减到足够小就可以了,本例取t?2.5。程序是 dt=0.01; t=-1:dt:2.5;

f1=Heaviside(t)-Heaviside(t-2); f2=exp(-3*t).*Heaviside(t);

f=conv(f1,f2)*dt; n=length(f); tt=(0:n-1)*dt-2; subplot(221), plot(t,f1), grid on;

axis([-1,2.5,-0.2,1.2]); title('f1(t)'); xlabel('t') subplot(222), plot(t,f2), grid on;

axis([-1,2.5,-0.2,1.2]); title('f2(t)'); xlabel('t') subplot(212), plot(tt,f), grid on; title('f(t)=f1(t)*f2(t)'); xlabel('t')

由于f1(t)和f2(t)的时间范围都是从t=-1开始,所以卷积结果的时间范围从 t=-2开始,增量还是取样间隔?,这就是语句tt=(0:n-1)*dt-2的由来。 三、上机实验内容

1. 调试实验原理中所述的相关程序。

2. 已知描述系统的微分方程和激励信号f(t)如下,试用解析法求系统的零状态响应y(t),并用MATLAB绘出系统零状态响应的时域仿真波形,验证结果是否相同 y’’(t)+ 4y’(t)+4y(t)=f’(t)+3f(t) f(t)= exp(-t)u(t)

3.已知描述系统的微分方程如下,试用MATLAB求系统在0~10秒范围内冲激响应和阶跃响应的数值解,并用绘出系统冲激响应和阶跃响应的时域波形

y’’(t)+3y’(t)+2y(t)=f(t) y’’(t)+ 2y’(t)+2y(t)=f’(t) 4.画出信号卷积积分f1(t)?f2(t)的波形,f1(t)?f2(t)?u(t)?u(t?1)

10

实验三 傅里叶变换、系统的频域分析

(设计型)

一、 实验目的

1、学会用MATLAB实现连续时间信号傅里叶变换 2、学会用MATLAB分析LTI系统的频域特性 3、学会用MATLAB分析LTI系统的输出响应 二、实验原理

1.傅里叶变换的MATLAB求解

MATLAB的symbolic Math Toolbox 提供了直接求解傅里叶变换及逆变换的函数fourier()及ifourier()两者的调用格式如下。 Fourier 变换的调用格式

F=fourier(f):它是符号函数f的fourier变换默认返回是关于w的函数。

F=fourier(f,v):它返回函数F是关于符号对象v的函数,而不是默认的w,即

F(v)??????f(x)e?jvxdx

Fourier逆变换的调用格式

f=ifourier(F):它是符号函数F的fourier逆变换,默认的独立变量为w,默认返回是

关于x的函数。

f=ifourier(f,u):它的返回函数f是u的函数,而不是默认的x.

注意:在调用函数fourier()及ifourier()之前,要用syms命令对所用到的变量(如t,u,v,w)进行说明,即将这些变量说明成符号变量。 例4-1 求f(t)?e?2t的傅立叶变换

解: 可用MATLAB解决上述问题: syms t

Fw=fourier(exp(-2*abs(t)))

例4-2 求F(jw)?1的逆变换f(t) 1??2解: 可用MATLAB解决上述问题 syms t w

ft=ifourier(1/(1+w^2),t)

2.连续时间信号的频谱图

例4-3 求调制信号f(t)?AG?(t)cos?0t的频谱,式中

A?4,?0?12?,??1??,G?(t)?u(t?)?u(t?) 222解:MATLAB程序如下所示

ft=sym('4*cos(2*pi*6*t)*(Heaviside(t+1/4)-Heaviside(t-1/4))');

11

Fw=simplify(fourier(ft)) subplot(121)

ezplot(ft,[-0.5 0.5]),grid on subplot(122)

ezplot(abs(Fw),[-24*pi 24*pi]),grid

用MATLAB符号算法求傅里叶变换有一定局限,当信号不能用解析式表达时,会提示出错,这时用MATLAB的数值计算也可以求连续信号的傅里叶变换,计算原理是

F(j?)??f(t)e????j?tdt?lim?f(n?)e?j?n??

??0n????当?足够小时,近似计算可满足要求。若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉害,可以近似地看成时限信号时,n的取值就是有限的,设为N,有

F(k)??f(n?)e?j?kn??n?0N?1,0?k?N,?k?2?k 是频率取样点 N?时间信号取样间隔?应小于奈奎斯特取样时间间隔,若不是带限信号可根据计算精度要求确定一个频率 W0为信号的带宽。

例4-4 用数值计算法求信号f(t)?u(t?1)?u(t?1)的傅里叶变换

解,信号频谱是F(j?)?2Sa(?),第一个过零点是?,一般将此频率视为信号的带宽,若将精度提高到该值的50倍,既W0=50?,据此确定取样间隔,??R=0.02;t=-2:R:2;

f=Heaviside(t+1)-Heaviside(t-1); W1=2*pi*5;

N=500;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F);

W=[-fliplr(W),W(2:501)]; F=[fliplr(F),F(2:501)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('f(t)'); title('f(t)=u(t+1)-u(t-1)'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('f(t)的付氏变换F(w)');

3.用MATLAB分析LTI系统的频率特性

当系统的频率响应H(jw)是jw的有理多项式时,有

1?0.02 2F0jwM)?1?L?b1jw(?)b0B(w)bM(jw)M?bM?1( H(jw)? ?NN?1A(w)aN(jw)?aN?1(jw)?L?a1(jw)?a012