六年级数学总复习资料【强烈推荐】 下载本文

五 比和比例 1比的意义和性质 (1) 比的意义

两个数相除又叫做两个数的比。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。 比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 (2)比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。 (3) 求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。 (4)比例尺

图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。 (5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2 比例的意义和性质 (1) 比例的意义

表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。 两端的两项叫做外项,中间的两项叫做内项。 (2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。 (3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。 3 正比例和反比例 (1) 成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。 用字母表示y/x=k(一定) (2)成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示x×y=k(一定)

第四章 几何的初步知识 一 线和角 (1)线 * 直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。 * 射线

射线只有一个端点;长度无限。 * 线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。 * 平行线

在同一平面内,不相交的两条直线叫做平行线。 两条平行线之间的垂线长度都相等。 * 垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。 (2)角

(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。 (2)角的分类

锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。 周角:角的一边旋转一周,与另一边重合。周角是360°。 二 平面图形 1长方形 (1)特征

对边相等,4个角都是直角的四边形。有两条对称轴。 (2)计算公式 c=2(a+b) s=ab