么是“011”, 却能够说出:“011 就是1 角”. 可见, 学生掌握的数学知识中有相当一部分, 直接来源于日常生活现实. 我们应该主动地设计源于实际生活的数学活动, 体察其中的数学底蕴, 获得相应的数学经验.
2.间接数学活动经验:创设实际情景构建数学。模型所获得的数学经验这些情景,依时间地点的不同,教师的关注程度,组织起适当的数学活动,最后以数学建模的方式,获得应用数学解决问题的实际经验. 由于实际情景非常复杂, 课堂上使用的情景,经过提炼、简化、筛选,离开实际状况有一定的距离,但是仍然是密切结合实际的数学体验.
3.专门设计的数学活动经验:由纯粹的数学活动所获得的经验这类活动,是具体的数学操作,专门为数学学习而设计、服务的. 它们是具体的、形象的、肢体的活动, 却充满着数学意味.
4.意境联结性数学活动经验:通过实际情景意境的沟通, 借助想象体验数学概念和数学思想的本质这类数学活动经验, 不是直接产生于某种实际活动, 而是将抽象的数学概念和法则, 借助举例、比喻、联想等方法, 寻求某种具体的形象化的支撑, 获得具体的意象固着点, 获得某种相对现实的数学经验. 幺弦*余振兴
收获是在数学教育教学中要高度重视数学活动以及学生在活动中所积累的活动经验 高研班 王文森
内江师范学院王新民等认为 (一)词源本义及流变 1.数学活动 1.1活动
“活动”一词的英文为“activity”,它源于拉丁文“act”,其基本含义为“doing”,即“做”.在西方哲学史上,古希腊哲学家亚里士多德最早提出“活动”这一概念.它把活动划分为理论活动、制作活动、实践活动.此后,黑格尔、费尔巴哈等均对活动进行了论述,但他们都是从主观方面来抽象地理解“活动”的.马克思把他们的活动理论进行了合理地扬弃,提出了科学的活动观.马克思认为,活动是“人对于外部世界的一种特殊的对待方式”.马克思把人的活动理解为感性的、能动的社会实践.因为,“社会生活在本质上就是实践的”.而人的活动表现为多种多样,按人对外部世界作用的方式可分为认识活动、实践活动、交往活动.人对事物的认识是在实践活动的基础上产生初步的感知,在此基础上通过对比、分析、抽象、归纳、概括等认识活动再上升到理性的认识以揭示出事物的本质特征.因此,活动的最初形式是在实践过程中的感知活动,在此基础上
再形成理性的认识活动(经验概括活动). 1.2数学活动
数学本身是人类活动的产物,是人类在社会实践活动过程中对现实世界数量关系和空间形式经验概括的结果.数学的产生、形成与应用的过程是人类的一项实践活动.因此,数学活动是人类对待外部世界的一种特殊的方式,是人类进行数学抽象与数学应用的实践过程.从数学发展来看,数学作为人类的一项活动,有两大历史渊源:一是以古希腊数学为代表的演绎体系;二是以古代中国数学为代表的归纳体系.前者以形式化的论证为其主要特征,而后者以经验性的算法为其主要特征.在漫长的发展过程中,二者的相互促进与相互融合,使得数学活动具有了鲜明的二重性——活动内容的形式性和活动过程的经验性,正如著名数学教育家波利亚指出的:“数学具有两个面??以欧几里得方式表现出来的数学看上去是一种系统的演绎科学;但在形成过程中的数学看上去却是一种实验性的归纳科学.”从数学活动的观点来看,数学具有静止状态和活动状态两种形态.作为静止状态的数学是把数学作为一个对象性的数学,它是指数学经验概括活动的结果,即活动结果的数学,表现形式为逻辑整理有序的、封闭的、静止的状态;作为活动状态的数学注重的是数学活动的过程性,是指从现实生活出发的数学化过程,是人类活动的数学,即活动过程的数学.表现形式为动态的、开放的活动状态,而作为学生学习的数学不应是静止状态的数学而应该是活动状态的数学.正如弗赖登塔尔指出的:“学生所要学习的不是作为一个封闭系统的数学,而是作为一项人类活动的数学,即从现实生活出发的数学化过程.如果需要也可以包括从数学本身出发的数学化过程.”因此,“数学教学是数学活动的教学” 1.3数学活动的层次
从活动的内容角度,前苏联数学教育家A?A?斯托利亚尔将数学活动分为3个阶段(层次):“经验材料的数学组织化,数学材料的逻辑组织和数学理论的应用,这3个阶段构成了数学学习者的学习活动的完整过程.”[51从数学学习的角度,数学活动体现为数学化的过程可分为先后两个层次:水平数学化,指把情景问题转化为数学问题的过程;垂直数学化,指建立数学问题与数学形式系统之间关系的过程.而从认识论的角度,苏格兰数学家波塞尔概述道:“数学是人类的一种最重要的活动.它不只是一种游戏,尽管我们喜欢玩它;它不只是一种艺术,尽管有时它是至高无上的艺术;它并不像哲学家所想象的是无聊的一小步、一小步推理组成的长链.数学活动是包容了从‘粗俗’的手工劳作到‘高雅’的理性发现的系统活动.” 1.4基本数学活动
“问题是数学的心脏”,数学活动是由“情景问题”驱动的,“问题解决”
是其主要的活动形式.在提出问题、形成相关概念、探究解决问题的策略与方法的时候主要以归纳活动为主,而在整理结论、表述问题解答过程以及进行形式化训练的时候则以演绎活动为主.在数学教学中,数学活动的形式或过程是多种多样的.《全日制义务教育数学课程标准》(实验稿)中强调了观察、试验、猜测、验证、推理与交流等数学活动;《普通高中数学课程标准》(实验)中强调的数学思维活动过程有:直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等,并且强调应将数学探究、数学建模和数学文化等3大数学活动贯穿整个高中教学始终.但其中最基本、最主要的数学活动是以逻辑为特征的演绎论证活动和以经验为特征的归纳发现活动,其它的数学活动都是围绕这两种活动而展开的,或者是一种拓展,或者是一种延伸,或者是一种组合.这里的“归纳”是指“从特殊到范围更广的推理”,就方法而言,包括枚举法、归纳法、类比法、统计推断、因果分析、以及观察试验、比较分类、综合分析等.因此,数学学习中的基本数学活动是“演绎活动”与“归纳活动”. 2数学基本活动经验 2.1经验的含义及其构成
“经验”向来是教育学、哲学、学习心理学等领域中所讨论的重要课题,无论是杜威所倡导的经验课程,还是拉卡托斯关于数学的“拟经验”观点,以及建构主义的学习理论,“经验”均是其中的核心概念.但经验的含义到底是什么呢?按《现代汉语词典》的解释,“经验”具有两个方面的含义.一是指由实践得来的知识与技能;二是经历.美国实用主义教育家杜威曾对“经验”给出过如下解释:“经验包含一个主动的因素和被动的因素,这两个因素以特有的形式结合着;在主动的方面,经验就是尝试,在被动的方面,经验就是承受结果.”协宏安教授在概括了关于经验各方面的解释后给出如下定义:“经验指的就是个人所获得的感性知识,及在感性知识基础上,经过自己系统整理和由实践反复检验了的科学知识,以及个人经历对个人身心发展产生的影响.”
我们认为,经验是一种过程性知识,是在实践活动中所形成的一种“活动图式”.它主要由3种成分组成,一是知识性成分,是指在活动过程中所建构的关于活动主客体的个人意义,包括操作的直观感知、建立的新旧知识之间的联系以及对活动过程的感悟等,是人们在活动过程中所悟出的道理,是对活动过程的直观把握,其合理性主要由活动的有效性来保证,“老马识途”;二是体验性成分,是指在活动过程中所产生的情绪体验,包括成就感与失败感、自我调节心态的体会等,如“大赛经验”;三是观念性成分,是指活动过程所形成的意识和信念,如应用意识、创新意识、做事的信心与信念等.
2.2经验与活动的关系
杜威指出:“经验即所做(doing)的事情、动作和感受(或经历)的密切关系就形成我们所谓经验”;“经验就是人和自己所创造的环境的‘交涉”.因此,经验是活动主体对客体的能动反映,经验与活动(做事)是紧密相连的.经验在活动中产生,又在活动中体现,并且只体现在需要这种经验的活动之中.经验是活动的过程和结果,活动是经验的源泉,而经验又是为人们的活动服务的,没有亲历的实践活动就根本谈不上什么经验,经验与活动的关系是“皮”与“毛”的关系.
2.3数学基本活动经验
在数学教学中,数学活动的一个主要目的是让学生经历探究的过程、思考的过程、抽象的过程、预测的过程、推理的过程以及反思的过程等,获取丰富的过程性知识,最终形成应用数学的意识.结合前面对“经验”3种成分的分析,我们可以给出数学活动经验的如下理解:数学活动经验是指学习者在参与数学活动的过程中所形成的感性知识、情绪体验和应用意识.感性知识是指具有学生个人意义的过程性知识,也包括学生大脑中那些未经训练的、那么严格的数学知识;情绪体验是指对数学的好奇心和求知欲、在数学学习活动中获得的成功体验、对数学严谨性与数学结果确定性的感受以及对数学美的感受与欣赏等;应用意识包括“数学有用”的信念、应用数学知识的信心、从数学的角度提出问题与思考问题的意识以及拓展数学知识应用领域的创新意识,而且应用意识是数学基本活动经验的核心成分,正如朱德全教授指出的;“应用意识的生成便是知识经验形成的标志.基于对数学基本活动的认识,我们认为可以把演绎活动经验和归纳活动经验称之为数学基本活动经验.数学基本活动经验是建立在人们的感觉基础上的,又是在活动过程中具体体现的,与形式化的数学知识相比,它没有明确的逻辑起点,也没有明显的逻辑结构,是动态的、隐性的和个人化的.它可以是米山国藏眼中的使人受益终生的深深铭刻在头脑中的数学的精神、数学的思维方法、研究方法、推理方法,甚至经历的挫折等;也可以是克莱因笔下的从整体意义上对数学活动的领悟.在数学学习中,要使学生真正理解数学知识,感悟数学的理性精神,形成创新能力,就应该让学生积累丰富而有效的数学活动经验,这些经验包括检索、抽取数学信息的经验,选择和运用已有知识的经验、建立数学模型的经验,应用数学符号进行表达的经验,抽象化、形式化的经验,选择不同数学模型的经验,预测结论的经验,对有关结论进行证明的经验,调整、加工、完善数学模型的经验,对所得结果进行解释和说明的经验,巩固、记忆、应用所得知识的经验等.这些经验的最基本的成分是演绎活动经验与归纳活动经验. 高研班·高艳玲