Êý×ÖÐźŴ¦Àí×÷Òµ ÏÂÔØ±¾ÎÄ

ʵÑé×÷Òµ£¨1£©

ʵÑé2-1 ÀëɢϵͳµÄ·ÖÎöµÄ»ù±¾ÀíÂÛ£¨ÊÖ¹¤Íê³É£© ʵÑéÄ¿µÄ£º¼ÓÉî¶ÔÀëɢϵͳ»ù±¾ÀíÂۺͷ½·¨µÄÀí½â

1 Ò»ÏßÐÔÒÆ²»±äÀëɢʱ¼äϵͳµÄµ¥Î»³éÑùÏìӦΪ

h(n)?(1?0.3n?0.6n)u(n)

(1) Çó¸ÃϵͳµÄ×ªÒÆº¯ÊýH(z)£¬²¢»­³öÆäÁã-¼«µãͼ£» (2) д³ö¸ÃϵͳµÄ²î·Ö·½³Ì¡£

2 ÒÑÖªÓÃÏÂÁвî·Ö·½³ÌÃèÊöµÄÒ»¸öÏßÐÔÒÆ²»±äÒò¹ûϵͳ

y(n)?y(n?1)?y(n?2)?x(n?1)

£¨a£© ÇóÕâ¸öϵͳµÄϵͳº¯ÊýH(z)?ÊÕÁ²ÇøÓò£»

£¨b£© Çó´ËϵͳµÄµ¥Î»³éÑùÏìÓ¦£»

Y(z)£¬»­³öH(z)µÄÁã-¼«µãͼ²¢Ö¸³öÆäX(z)3 Ò»¸öÀëɢʱ¼äϵͳµÄÒ»¶Ô¹²éµã£ºp1?0.8e½×ÖØÁãµã¡£

j?4£¬p2?0.8e?j?4£¬ÔÚÔ­µãÓжþ

£¨1£© д³ö¸ÃϵͳµÄ×ªÒÆº¯ÊýH(z)£¬»­³öÁã-¼«µãͼ£» £¨2£© ÊÔÓÃÁã-¼«µã·ÖÎöµÄ·½´óÖ»­³öÆä·ùƵÏìÓ¦£¨0¡«2¦Ð£©£»

£¨3£© ÈôÊäÈëÐźÅx(n)?u(n)£¬²¢ÇÒϵͳÓгõʼÌõ¼þy(?2)?y(?1)?1,Çó¸Ãϵͳ

µÄÊä³öy(n)

ʵÑé2-2 ÀëɢϵͳµÄ²î·Ö·½³Ì¡¢³å¼¤ÏìÓ¦ºÍ¾í»ý·ÖÎö

ʵÑéÄ¿µÄ£º¼ÓÉî¶ÔÀëɢϵͳµÄ²î·Ö·½³Ì¡¢³å¼¤ÏìÓ¦ºÍ¾í»ý·ÖÎö·½·¨µÄÀí½â¡£ ʵÑéÔ­Àí£ºÀëɢϵͳ

x[n]y[n]Discrete-timesystme

ÆäÊäÈë¡¢Êä³ö¹ØÏµ¿ÉÓÃÒÔϲî·Ö·½³ÌÃèÊö£º

?dk?0Nky[n?k]??pkx[n?k]

k?0M ÊäÈëÐźŷֽâΪһϵÁе¥Î»³å¼¤Ðźţ¬x[n]?m????x[m]?[n?m]¡£¼Çϵͳµ¥Î»³å

1

?

¼¤ÏìÓ¦?[n]?h[n]£¬ÔòϵͳÏìӦΪÈçϵľí»ý¼ÆËãʽ£º

y[n]?x[n]?h[n]?m????x[m]h[n?m]

? µ±dk?0,k?1,2,...Nʱ£¬h[n]ÊÇÓÐÏÞ³¤¶ÈµÄ£¨n£º[0£¬M]£©£¬³ÆÏµÍ³ÎªFIRϵͳ£»·´Ö®£¬³ÆÏµÍ³ÎªIIRϵͳ¡£

ÔÚMATLABÖУ¬¿ÉÒÔÓú¯Êýy=Filter(p,d,x) Çó½â²î·Ö·½³Ì£¬Ò²¿ÉÒÔÓú¯Êý y=Conv(x,h)¼ÆËã¾í»ý¡£

ʵÑéÄÚÈÝ£º±àÖÆ³ÌÐòÇó½âÏÂÁÐÁ½¸öϵͳµÄµ¥Î»³å¼¤ÏìÓ¦ºÍ½×Ô¾ÏìÓ¦£¬²¢»æ³öÆäͼÐΡ£

y[n]?0.75y[n?1]?0.125y[n?2]?x[n]?x[n?1] y[n]?0.25{x[n?1]?x[n?2]?x[n?3]?x[n?4]}

ʵÑéÒªÇ󣺸ø³öÀíÂÛ¼ÆËã½á¹ûºÍ³ÌÐò¼ÆËã½á¹û²¢ÌÖÂÛ¡£

ʵÑé2-3 ÀëɢϵͳµÄƵÂÊÏìÓ¦·ÖÎöºÍÁã¡¢¼«µã·Ö²¼

ʵÑéÄ¿µÄ£º¼ÓÉî¶ÔÀëɢϵͳµÄƵÂÊÏìÓ¦·ÖÎöºÍÁã¡¢¼«µã·Ö²¼µÄ¸ÅÄîÀí½â¡£ ʵÑéÔ­Àí£ºÀëɢϵͳµÄʱÓò·½³ÌΪ

?dk?0Nky(n?k)??pkx(n?k)k?0M

Æä±ä»»Óò·ÖÎö·½·¨ÈçÏ£º ƵÓò:

m???

ϵͳµÄƵÂÊÏìӦΪ

y[n]?x[n]?h[n]??x[m]h[n?m]?Y(e?)?X(e?)H(e?)jjj?

p(ej?)p0?p1e?j??...?pMe?jM?H(e)??j??j??jN?D(e)d?de?...?de01N

ZÓò

j?m???

ϵͳµÄ×ªÒÆº¯ÊýΪ

y[n]?x[n]?h[n]??x[m]h[n?m]?Y(z)?X(z)H(z)?

p(z)p0?p1z?1?...?pMz?MH(z)???1?ND(z)d?dz?...?dz01N

·Ö½âÒòʽ

2

H(z)?

i?0N?pkz?dkzM?i?i?K?1?(1??iz)?1?(1??iz)i?1i?1NMi?0

ÆäÖÐ?iºÍ?i³ÆÎªÁã¡¢¼«µã¡£

ÔÚMATLABÖУ¬¿ÉÒÔÓú¯Êý[z£¬p£¬K]=tf2zp£¨num£¬den£©ÇóµÃÓÐÀí·ÖʽÐÎʽµÄÏµÍ³×ªÒÆº¯ÊýµÄÁã¡¢¼«µã£¬Óú¯Êýzplane£¨z£¬p£©»æ³öÁã¡¢¼«µã·Ö²¼Í¼£»Ò²¿ÉÒÔÓú¯Êýzplane£¨num£¬den£©Ö±½Ó»æ³öÓÐÀí·ÖʽÐÎʽµÄÏµÍ³×ªÒÆº¯ÊýµÄÁã¡¢¼«µã·Ö²¼Í¼¡£

(Vector DEN specifies the coefficients of the denominator in descending powers of s. Matrix NUM indicates the numerator coefficients with as many rows as there are outputs. The zero locations are returned in the columns of matrix Z, with as many columns as there are rows in NUM. The pole locations are returned in column vector P, and the gains for each numerator transfer function in vector K.

For discrete-time transfer functions, it is highly recommended to make the length of the numerator and denominator equal to ensure correct results. You can do this using the function EQTFLENGTH in the Signal Processing Toolbox. However, this function only handles

single-input single-output systems.)

ÁíÍ⣬ÔÚMATLABÖУ¬¿ÉÒÔÓú¯Êý [r£¬p£¬k]=residuez£¨num£¬den£©Íê³É²¿·Ö·Öʽչ¿ª¼ÆË㣻¿ÉÒÔÓú¯Êýsos=zp2sos£¨z£¬p£¬K£©Íê³É½«¸ß½×ϵͳ·Ö½âΪ2½×ϵͳµÄ´®Áª¡£

ʵÑéÄÚÈÝ£ºÇóϵͳ

0.0528?0.797z?1?0.1295z?2?0.1295z?3?0.797z?4?0.0528z?5H(z)?1?1.8107z?1?2.4947z?2?1.8801z?3?0.9537z?4?0.2336z?5

µÄÁã¡¢¼«µãºÍ·ù¶ÈƵÂÊÏìÓ¦¡£

ʵÑéÒªÇ󣺱à³ÌʵÏÖϵͳ²ÎÊýÊäÈ룬»æ³ö·ù¶ÈƵÂÊÏìÓ¦ÇúÏߺÍÁã¡¢¼«µã·Ö²¼Í¼¡£

3