VμC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的, 绝大部分代码是用C语言编写
的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。
工作原理编辑
uC/OS-II是一种基于优先级的可抢先的硬实时内核。
要实现多任务机制,那么目标CPU必须具备一种在运行期更改PC的途径,否则无法做到切换。不幸的是,直接设置PC指针,还没有哪个CPU支持这样的指令。但是一般CPU都允许通过类似JMP,CALL这样的指令来间接的修改PC。我们的多任务机制的实现也正是基于这个出发点。事实上,我们使用CALL指令或者软中断指令来修改PC,主要是软中断。但在一些CPU上,并不存在软中断这样的概念,所以,我们在那些CPU上,使用几条PUSH指令加上一条CALL指令来模拟一次软中断的发生。
在uC/OS-II里,每个任务都有一个任务控制块(Task Control Block),这是一个比较复杂的数据结构。在任务控制块的偏移为0的地方,存储着一个指针,它记录了所属任务的专用堆栈地址。事实上,在uC/OS-II内,每个任务都有自己的专用堆栈,彼此之间不能侵犯。这点要求程序员在他们的程序中保证。一般的做法是把他们申明成静态数组。而且要申明成OS_STK类型。当任务有了自己的堆栈,那么就可以将每一个任务堆栈在那里记录到前面谈到的任务控制快偏移为0的地方。以后每当发生任务切换,系统必然会先进入一个中断,这一般是通过软中断或者时钟中断实现。然后系统会先把当前任务的堆栈地址保存起来,仅接着恢复要切换的任务的堆栈地址。由于哪个任务的堆栈里一定也存的是地址(还记得我们前面说过的,每当发生任务切换,系统必然会先进入一个中断,而一旦中断CPU就会把地址压入堆栈),这样,就达到了修改PC为下一个任务的地址的目的。
2任务管理编辑
uC/OS-II 中最多可以支持64 个任务,分别对应优先级0~63,其中0 为最高优先级。63为最低级,系统保留了4个最高优先级的任务和4个最低优先级的任务,所有用户可以使用的任务数有56个。
uC/OS-II提供了任务管理的各种函数调用,包括创建任务,删除任务,改变任务的优先级,任务挂起和恢复等。
系统初始化时会自动产生两个任务:一个是空闲任务,它的优先级最低,该任务仅给一个整型变量做累加运算;另一个是系统任务,它的优先级为次低,该任务负责统计当前cpu的利用率。
时间管理
uC/OS-II的时间管理是通过定时中断来实现的,该定时中断一般为10毫秒或100毫秒发生一次,时间频率取决于用户对硬件系统的定时器编程来实现。中断发生的时间间隔是固定不变的,该中断也成为一个时钟节拍。
uC/OS-II要求用户在定时中断的服务程序中,调用系统提供的与时钟节拍相关的系统函数,例如中断级的任务切换函数,系统时间函数。
内存管理
在ANSI C中是使用malloc和free两个函数来动态分配和释放内存。但在嵌入式实时系统中,多次这样的操作会导致内存碎片,且由于内存管理算法的原因,malloc和free的执行时间也是不确定。
uC/OS-II中把连续的大块内存按分区管理。每个分区中包含整数个大小相同的内存块,但不同分区之间的内存块大小可以不同。用户需要动态分配内存时,系统选择一个适当的分区,按块来分配内存。释放内存时将该块放回它以前所属的分区,这样能有效解决碎片问题,同时执行时间也是固定的。
3通信同步编辑
对一个多任务的操作系统来说,任务间的通信和同步是必不可少的。uC/OS-II中提供了4种同步对象,分别是信号量,邮箱,消息队列和事件。所有这些同步对象都有创建,等待,发送,查询的接口用于实现进程间的通信和同步。
4任务调度编辑
uC/OS-II 采用的是可剥夺型实时多任务内核。可剥夺型的实时内核在任何时候都运行就绪了的最高优先级的任务。
uC/os-II的任务调度是完全基于任务优先级的抢占式调度,也就是最高优先级的任务一旦处于就绪状态,则立即抢占正在运行的低优先级任务的处理器资源。为了简化系统设计,uC/OS-II规定所有任务的优先级不同,因为任务的优先级也同时唯一标志了该任务本身。
1) 高优先级的任务因为需要某种临界资源,主动请求挂起,让出处理器,此时将调度就
绪状态的低优先级任务获得执行,这种调度也称为任务级的上下文切换。
2) 高优先级的任务因为时钟节拍到来,在时钟中断的处理程序中,内核发现高优先级任务获得了执行条件(如休眠的时钟到时),则在中断态直接切换到高优先级任务执行。这种调度也称为中断级的上下文切换。
这两种调度方式在uC/OS-II的执行过程中非常普遍,一般来说前者发生在系统服务中,后者发生在时钟中断的服务程序中。
调度工作的内容可以分为两部分:最高优先级任务的寻找和任务切换。其最高优先级任务的寻找是通过建立就绪任务表来实现的。u C / O S 中的每一个任务都有独立的堆栈空间,并有一个称为任务控制块TCB(Task Control Block)的数据结构,其中第一个成员变量就是保存的任务堆栈指针。任务调度模块首先用变量OSTCBHighRdy 记录当前最高级就绪任务的TCB 地址,然后调用OS_TASK_SW()函数来进行任务切换。
5中断机理编辑
引 言
在嵌入式操作系统领域,由Jean J. Labrosse开发的μC/OS,由于开放源代码和强大而稳定的功能,曾经一度在嵌入式系统领域引起强烈反响。而其本人也早已成为了嵌入式系统会议(美国)的顾问委员会的成员。
不管是对于初学者,还是有经验的工程师,μC/OS开放源代码的方式使其不但知其然,还知其所以然。通过对于系统内部结构的深入了解,能更加方便地进行开发和调试;并且在这种条件下,完全可以按照设计要求进行合理的裁减、扩充、配置和移植。通常,购买RTOS往往需要一大笔资金,使得一般的学习者望而却步;而μC/OS对于学校研究完全免费,只有在应用于盈利项目时才需要支付少量的版权费,特别适合一般使用者的学习、研究和开发。自1992第1版问世以来,已有成千上万的开发者把它成功地应用于各种系统,安全性和稳定性已经得到认证,现已经通过美国FAA认证。
组成部分
μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。
核心部分(OSCore.c) 是操作系统的处理核心,包括操作系统初始化、操作系统运行、中断
进出的前导、时钟节拍、任务调度、事件处理等多部分。能够维持系统基本工作的部分都在这里。
任务处理部分(OSTask.c) 任务处理部分中的内容都是与任务的操作密切相关的。包括任务的建立、删除、挂起、恢复等等。因为μC/OS-II是以任务为基本单位调度的,所以这部分内容也相当重要。
时钟部分(OSTime.c) μC/OS-II中的最小时钟单位是timetick(时钟节拍)。任务延时等操作是在这里完成的。
任务同步和通信部分 为事件处理部分,包括信号量、邮箱、邮箱队列、事件标志等部分;主要用于任务间的互相联系和对临界资源的访问。
与CPU的接口部分 是指μC/OS-II针对所使用的CPU的移植部分。由于μC/OS-II是一个通用性的操作系统,所以对于关键问题上的实现,还是需要根据具体CPU的具体内容和要求作相应的移植。这部分内容由于牵涉到SP等系统指针,所以通常用汇编语言编写。主要包括中断级任务切换的底层实现、任务级任务切换的底层实现、时钟节拍的产生和处理、中断的相关处理部分等内容。
中断处理
2.1 函数调用和中断调用的操作
MSP430最常使用的C编译器应该就是IAR Embedd-ed WorkBench。对于这一编译器来说,通过分析和研究,发现它有以下规律。
函数调用
如果是函数级调用,编译器会在函数调用时先把当前函数PC压栈,然后调用函数,PC值改变。
如果被调用的函数带有参数,那么,编译器按照以下的规则进行。
最左边的两个参数如果不是struct(结构体)或者union(联合体),将被赋值到寄存器,否则将被压栈。函数剩下的参数都将被压栈。根据最左边的那两个参数的类型,分别赋值给R12(对于32位类型赋值给R12:R13)和R14(对于32位类型赋值给R14:R15)。
中断调用
如果是在中断中调用中断服务子程序的话,编译器将把当前执行语句的PC压栈,同时再把