(精品)基于单片机的超声波测距仪的设计参考毕业论文 下载本文

第4章 主要元件介绍

4.1 单片机AT89C51

单片机即单片微型计算机SCMC(Single Chip MicroComputer)。它把构成一台计算机的主要功能部、器件,如CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入输出设备(例如:串行口、并行输出口等)、中断系统、定时计数器等集中在一块芯CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入输出设备(例如:串行口、并行输出口等)制功能,所以又称为微控制器MCU(Microcontroller Unit)。相对于普通微机,单片机的体积要小得多,一般嵌入到其他仪器设备里,实现自动检测与控制,因此也称为嵌入式微控制器EMCU(Embedded Microcontroller Unit)。

本设计的MCU采用的是DIP(Dual In-line Package塑料双列直插式)封装的AT89C51高性能8位单片机。AT89C51是一个低电压,高性能CMOS 8位单片机,片内含4k bytes的可反复擦写的Flash只读程序存储器和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案。

AT89C51是一个低功耗高性能单片机,40个引脚,32个外部双向输入输出(IO)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。其引脚图如右图4.1。

AT89C51的引脚功能有: 图4.1 AT89C51的引脚图

1) 主电源引脚

VSS——第20脚,电路接地电平。

VCC——第40脚,正常运行和编程校验+5V电源。 2) 时钟源

XTAL1——第19脚,一般外接晶振的一个引脚,它是片内反相放大器的输入端口。当直接采用外部信号时,此引脚应接地。

XTAL1——第18脚,接外部晶振的另一个引脚,它是片内反相放大器的输出端口。当采用外部振荡信号源泉时,此引脚为外部振荡信号的输入端口,与信号源相连接。

3) 控制、选通或复用

RSTVPD——第9脚,RESET复位信号输入端口。当单片机正常工作时,由该引脚输入脉宽为2个以上机器周期的高电平复位信号到单片机。在VCC掉电期间,此引脚(即VPD)可接通备用电源,以保持片内RAM信息不受破坏。

——第30脚,输出允许地址锁存信号。当单片机访问外部存储器时,ALE信号的负跳变将P0口上的低8位地址送入锁存器。在非访问外部存储器期间,ALE仍以16振荡频率固定不变地输出,因此它可对个输出或用于定时目的。要注意的是:每当访问外部存储器时将跳过一个ALE脉冲。为第二功能,当对片内程序存储器编程写入时,此引脚作为编程脉冲输入端。

——第29脚,访问外部程序存储器选能信,低电平有效。当AT89C51由外部程序存储器取指令(或数据)时,每个机器周期两次有效,即输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的信号不出现。

:外部访问允许。欲使CPU公访问外部程序存储器(地址0000H-FFFFH),端必须保持低电平(接地)。需注意的是:如果加密位LBI被编程,复位时内部会锁存端状态。Flash存储器编程时,该引脚加上+12V的编程允许电源VPP,当然这必须是该器件是使用12V编程电压VPP。

4) 多功能IO端口

P0口——第32~39脚,8位漏极开路双向IO端口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问数据存储器或程序存储器时,这组口线分时转换地址和数据总线复用,在访问期间激活内部上拉电阻。

P1口——第1~8脚,具有内部上拉电路的8位准双向IO端口。在对片内程序存储器(EPROM型)进行程序编程和校验时,用做低8位地址总线。

P2口——第21~28脚,具有内部上拉电路的8位准双向IO端口。当单片机访问存储器时,用做高8位地址总线;在对片内程序存储器(EPROM型)进行程序编程和校验时,亦用做高8位地址总线。

P3口——第10~17脚,具有内部上拉电路的8位准双向IO端口。它还提供特殊的第二变异功能。它的每一位均可独立定义为第一功能的IO口或第二变异功能。第二变异功能的具体含义如表4.2:

表4.2 P3口的第二变异功能

端口引脚 P3.0 P3.1

第二功能 RXD (串行输入口) TXD (串行输出口)

P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 (外中断0) (外中断1) T0 (定时计数器0) T1 (定时计数器1) (外部数据存储器写选通) (外部数据存储器读选通) 4.2 超声波传感器T40、R40

超声波是指频率高于20kHz的机械波。超声波在恒定环境条件下的传播速度不变。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成接收器和发送器。超声波传感器由两个压电晶片和一个共振板组成,当压电晶片的两极加上频率等于其固有谐振频率的脉冲信号时,压电晶片产生共振,并带动共振板产生振动,同时带动压电晶片也一起振动,将机械能转换为电能,称为超声波接收器。超声波传感器利用压电效应进行电能和超声波机械能的相互转换,也称为超声波换能器。超声波发射换能器与接收换能器在结构上稍有不同,使用时应分清器件上的标志,但外观基本一致。有的超声波传感器既作发送,也能作接收。这里仅介绍小型超声波传感器,其结构如图1所示,发送与接收略有差别,它适用于在空气中传播,工 图4.2 T40、R40外观 作频率一般为23-25KHZ及40-45KHZ。这类传感器适用于测距、遥控、防盗等用途。该种有TR-40-16,TR-40-12等(其中T表示发送,R表示接收,40表示频率为40KHZ,16及12表示其外径尺寸,以毫米计)。本设计采用的就是发送超声波传感器T40及接收超声波传感器R40,其外观如图4.3。

4.3 温度传感器DS18B20

温度传感器主要由热敏元件组成。热敏元件品种教多,市场上销售的有双金属片、铜热电阻、铂热电阻、热电偶及半导体热敏电阻等。以半导体热敏电阻为探测元件的温度传感器应用广泛,这是因为在元件允许工作条件范围内,半导体热敏电阻器具有体积小、灵敏度高、精度高的特点,而且制造工艺简单、价格低廉。半导体热敏电阻按温度特性热敏电阻可分为正温度系数热敏电阻(电阻随温度上升而增加)和负温度系数热敏电阻(电阻随温度上升而下降)。

本设计采用的是美国Dallas 半导体公司的不锈钢封装的DS18B20数字温度传感器。DS18B20是采用专门设计的不锈钢外壳,仅有0.2mm的壁厚,具有很小的蓄热量,采用导热性高的密封胶,保证了温度传感器的高灵敏性,极小的温度延迟。DS18B20支持“一线总线”接口(1-Wire),测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

DS18B20采用3脚PR-35封装(图4.4): DS18B20数字化温度传感器的主要性能如下: 1) 适用电压为3V~5V;

2) 9~12位分辨率可调,对应的可编程温度分别为0.5℃、0.25℃、0.125℃、

0.0625℃;

3) TO-92、SOIC及CSP封装可选; 4) 测温范围:-55℃~125℃; 5) 精度:-10℃~85℃范围内±0.5℃;

6) 无需外部元件,独特的一线接口,电源和信号复合在一起; 7) 每个芯片唯一编码,支持联网寻址,零功耗等待。

图4.4 PR-35封装图

第5章 硬件电路设计

5.1 超声波发射电路

超声波发射电路原理图如图5.1所示。发射电路主要由反相器74LS04和超声波发射换能器T40构成,单片机P1.0端口输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采用两个反向器并联,用以提高驱动能力。上位电阻R1、R2一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。

图5.1 超声波发射电路原理图

5.2 超声波接收电路

超声波接收电路由超声波传感器、两级放大电路和锁相环电路组成。超声波传感