14. 原始数据同时乘以一个既不等于零也不等于1的常数后: A. D.
不变,M变(M为中位数) B.
与M都不变 C.
变、M不变
与M都变 E.以上都不对
15. 表示变量值变异情况的指标最常用的是:
A.四分位数间距 B.全距 C.标准差 D.变异系数 E.方差
16. 一组计量资料中,每个变量值与均数之差的平方和、除以变量值的个数-1,再开平方所
得的值为:
A.方差 B.全距 C.四分位数间距 D.变异系数 E.标准差 17. 标准差一定:
A.不比均数大 B.不比均数小 C.取决于均数 D.比标准误小 E.以上都不对 18. 变异系数CV的数值_________
A.一定小于1 B.一定大于1 C.可大于1;也可小于1 D.一定不会等于零 E.一定比S小
19. 比较身高和体重两组数据变异度大小宜采用:
A.全距 B.四分位数间距 C.方差 D.变异系数 E.标准差 20. 描述一组偏态分布资料的变异度,以______指标较好。 A. R B. S2 C. Q D. S E. CV
21. 当两组(或几组)资料均数相近、度量单位相同时,标准差大的那组资料: A.均数的代表性最差 B.均数的代表性最好 C.无法据此判断出均数的代表性 D.均数也最大 E.以上都不对
22. 一组数据呈正态分布,其中小于
+2.58S的变量值有:
A. 5% B. 95% C. 97.5% D. 92.5% E. 99.5%
23. 若正常人血铅含量近似对数正态分布,拟用300名正常成人血铅确定99%正常值范围,最好采用下列哪个公式: A.
lgx +2.58slgx ) C. ±2.58S
D. P99 =L+i/f99 (300×99/100- fL ) E. lg-1 (lgx +2.33Slgx ) 24. 某市120名12岁男孩平均身高=143.10cm,S=5.67cm,则身高在128.24-157.96cm范围内的理论频数最接近下列哪个值?
A. 114 B. 119 C. 64 D. 72 E. 96
25. 若上海市健康女工744人血红蛋白含量的均数为12.239g%,标准差为0.998g%,则下列哪个最有理由认为是正常范围:
A. 11.24-11.3237 B. 9.654-14.814 C. 10.283-14.195 D. 10.592-13.886 E. 10.952-13.516
三、简答题
+2.58S B. lg-1 (
描述数值变量资料集中趋势的指标有哪些?其适用范围有何异同? 描述数值变量资料离散趋势的指标有哪些?其适用范围有何异同? 医学中参考值范围的涵义是什么?确定的步骤和方法是什么?
四、计算分析题
1.某市100名7岁男童的坐高(cm)如下:
63.8 64.5 66.8 66.5 66.3 68.3 67.2 68.0 67.9 69.7 63.2 64.6 64.8 66.2 68.0 66.7 67.4 68.6 66.8 66.9 63.2 61.1 65.0 65.0 66.4 69.1 66.8 66.4 67.5 68.1 69.7 62.5 64.3 66.3 66.6 67.8 65.9 67.9 65.9 69.8 71.1 70.1 64.9 66.1 67.3 66.8 65.0 65.7 68.4 67.6 69.5 67.5 62.4 62.6 66.5 67.2 64.5 65.7 67.0 65.1 70.0 69.6 64.7 65.8 64.2 67.3 65.0 65.0 67.2 70.2 68.0 68.2 63.2 64.6 64.2 64.5 65.9 66.6 69.2 71.2 68.3 70.8 65.3 64.2 68.0 66.7 65.6 66.8 67.9 67.6 70.4 68.4 64.3 66.0 67.3 65.6 66.0 66.9 67.4 68.5 ⑴ 编制其频数分布表并绘制直方图,简述其分布特征;
⑵ 计算中位数、均数、几何均数,并说明用其中哪一种来表示这组数据的集中趋势为好? ⑶ 计算极差、四分位数间距、标准差,并说明用其中哪一种来表示这组数据的离散趋势为好? (4)计算坐高在64.0cm到68.0cm范围内的7岁男童比例。 (5)计算100名7岁男童中坐高在64.0cm到68.0cm范围内的人数。
2. 用玫瑰花结形成试验检查13 名流行性出血热患者的抗体滴度,结果如下,求平均滴度。
1:20 1:20 1:80 1:80 1:320 1:320 1:320 1:160 1:160 1:80 1:80 1:40 1:40
3. 调查某地145名正常人尿铅含量(mg/L)如下:
尿铅含量 0~ 4~ 8~ 12~ 16~ 20~ 24~ 28~ 例 数 18 26 39 28 25 6 1 2 ⑴求中位数; ⑵求正常人尿铅含量95%的正常值范围。
第四章 总体均数的估计和假设检验
第五章 方差分析
一、名词解释
1 标准误(standard error) 2 可信区间(confidence interval) 3 假设检验(hypothesis testing) 4 统计推断(statistical inference) 5 Ⅰ型错误(type I error) 6 Ⅱ型错误(type II error)
7 检验效能(power of test) 8 变量变换 (variable transformation)
二、单选题
1 ________小,表示用该样本均数估计总体均数的可靠性大。
A. CV B. S C.
D. R E. 四分位数间距
2 统计推断的内容是__________。
A. 用样本指标估计相应总体指标 B. 检验统计上的“假设” C. A,B均不是 D. A,B均是 E. 估计参考值范围
3 两样本均数比较时,分别取以下检验水准,以________所对应的第二类错误最小。
A. 0.01 B. α=0.05 C. α=0.10 D. α=0.20 E. α=0.25 4 方差分析中,当P<0.05时,结果________。
A. 可认为各样本均数都不相等 B. 可认为各总体均数不等或不全等 C. 可认为总体均数都不相等 D) 证明总体均数不等或不全相等 E. 以上都不对
5 变量变换的目的是_______。
A. 方差齐性化 B. 曲线直线化 C. 变量正态化 D. A,B,C均对 E. A,B,C均不对
6 甲乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得
,则理论上_________。
A.
B. 作两样本均数的t检验,必然得出无差别的结论 C. 作两方差齐性的F检验,必然方差齐
D. 分别由甲、乙两样本求出的总体均数的95%可信区间,很可能有重叠 E. 以上均不是 7. 在相同自由度(
)及F值时,方差齐性检验与方差分析所得的P值_______。
A. 前者大 B. 前者小 C. 两者相等 D. 前者是后者的两倍 E. 后者是前者的两倍
8. 正态性检验中,按α=0.10水准,认为总体服从正态分布,此时若推断有错,此错误的概
率为___________。
A. 大于0.10 B. 小于0.10 C. 等于0.10 D.β,而β未知 E. 1-β,而β未知 9. 在正态总体中随机抽样,
A. 1.96σ B. 1.96E. A. C.
B.
D.
的概率为5%。
C. 2.58 D.
10. 成组设计的方差分析中,必然有_____________。
E. 以上均不对
11. 配伍组设计的方差分析中,
A. D.
12. 在相同自由度(
B.
E.
等于__________。
C.
)及α水准时,方差分析的界值比方差齐性检验的界值________。
A. 大 B. 小 C. 相等 D. 前者是后者的两倍 E. 不一定 13. 下面可用来说明均数抽样误差大小的是________________。
A.
B.
C. S D. CV E. 四分位数间距
14. 对于一组样本来说,若标准差固定不变,可通过_______________来减少抽样误差。
A. 增大样本含量 B. 增大样本均数 C. 减小变异系数 D. 减小几何均数 E. 以上都不对 15. 以下关于抽样误差,正确的是____________。
抽样误差仅是由个体变异产生的,抽样造成的样本统计量与总体参数的差异 A. 抽样研究中,抽样误差是可以避免的
B. 对于同一总体的若干样本统计量间,也存在抽样误差 C. 抽样误差的大小可用标准差来说明 D. 以上均不对
16. 以下关于t分布不正确的是________.
A. 在相同自由度时,|t|值越大,概率P越小 ? 在相同t值时,双尾概率P为单尾概率P的两倍 ? t分布曲线是一条曲线
? t分布的极限分布是标准正态分布 ? 标准正态分布可看作是t分布的特例 17. 以下关于可信区间,正确的是_________。
A. 可信区间是包含未知总体参数的一个范围 ? 可信区间包含可信区间上下限两个值
? 可信区间的确切含义是指有(1-α)的可能认为计算出的可信区间包含了总体参数 ? 可信区间的确切含义也可理解是总体参数落在该范围的可能性为1-α ? 以上说法均不对
18. 为了解某地1岁婴儿的血红蛋白浓度,从该地随机抽取了1岁婴儿n(<50)人,测得其血红
蛋白的平均数为A.
,标准差为S,则该地1岁婴儿血红蛋白的平均浓度的95%可信区间为
B.
)
__________。(总体标准差σ未知)