Q.Zhangetal./FoodChemistry179(2015)15–2523Fig.3(continued)Hence,extractiontimeof50minwasselectedasthecenterpointforfurtherexperiment.3.5.Model?ttingandoptimizationforextractionofresveratrol3.5.1.Model?ttingTheexperimentaldatawasanalyzedaccordingtopreviousreportedmethods(Guo,Zou,&Sun,2010;Jiangetal.,2011).Thecorrelationbetweenresponsevariablesandtestvariables(theextractionratioofresveratrol)associatedwiththefollowingsec-ond-orderpolynomialequation:Y?à17:43308t0:48687X1t111:69417X2t0:29284X3t0:091158X4à0:12X1X2t0:00055X1X3à0:00011X1X4à0:96250X2X3à0:0325X2X42t0:0000725X3X4à0:0051346X21à801:16667X22à0:016998X23à0:000874917X4thatthemodelwashighlysigni?cant.Therewasonlya0.01%chancethatamodelF-valuecouldoccurduetonoise.Thedetermi-nationcoef?cientR2ofthemodelwas0.9854,indicatingthat98.54%ofthevariabilityintheresponsecouldbeexplainedbythemodel.Inaddition,theP-valueofP=0.1259forlack-of-?timpliedthelack-of-?twasnotsigni?cantrelativetothepureerror,indicatingthemodelequationwasadequatetopredicttheextrac-tionratioofresveratrolwithintherangeofexperimentalvariables.Thesigni?canceoftheregressioncoef?cientswastestedbyF-test,andthecorrespondingP-valuesforthemodeltermsarealsolistedinTable2.TheP-valueisusedasatooltocheckthesigni?canceofeachcoef?cient,whichinturnmayindicatethepatternoftheinteractionbetweenthevariables.ThesmallertheP-valueis,themoresigni?cantthecorrespondingcoef?cientis.Accordingly,X1,222X3,X4,X2X3,X21,X2,X3andX4weresigni?cant(P<0.05),whileX2,X1X2,X1X3,X1X4,X2X4,X3X4werenotsigni?cant(P>0.05).e5TwhereYrepresentstheextractionratioofresveratrol,andX1,X2,X3andX4representextractiontemperature,CaOtorawmaterialratio,watertorawmaterialratioandextractiontime,respectively.TheresultsofANOVA,lack-of-?tandtheadequacyofthemodelaresummarizedinTable2.ThemodelF-valueof65.7847implied3.5.2.OptimizationforextractionofresveratrolProcessvariablesandexperimentaldataareshowninTable1.Inordertobetterunderstandtheinteractionsofthevariables,theresponsesurfaceplotsandcontourplotsforthemodelwereproducedbytheStat-EaseDesign-Expertsoftware.Theshapesofthecontourplots,circularorelliptical,indicatewhetherthe24Q.Zhangetal./FoodChemistry179(2015)15–25Table3
ThecomparisonofMSCEandSPEundertheoptimalconditions.MethodEvaluationindexesAmountofpotAmountofsamples(kg)Extractiontemperature(°C)Timeconsumption(min/kg)Solventconsumption(L/kg)CaOconsumption(kg/kg)Extractionratio(%)MSCE42047b41.6aSPE4206051.5a,bDesignateasigni?cantdifferences.aP<0.05comparedwithSPE.bP<0.01comparedwiththeSPE.mutualinteractionsbetweenvariablesaresigni?cantornot(Xiong,Li,etal.,2014;Xiong,Zhang,etal.,2014).Acircularcon-tourplotindicatesthattheinteractionbetweenrelatedvariablesisnegligible,whileanellipticalcontourplotindicatesthattheinteractionbetweenrelatedvariablesissigni?cant(Muralidhar,Chirumamila,Marchant,&Nigam,2001;Zhang,Li,Xiong,Jiang,&Lai,2013).TheresponsesurfaceplotsandcontourplotsasshowninFig.3weregeneratedusingDesign-Expert,whichdepictedtheinteractionsbetweentwovariablesbykeepingtheothervariablesattheirzerolevelsforextractionratioofresveratrol.Itwasevidentthatthesethree-dimensionalplotsandtheircorrespondingcon-tourplotsprovidedavisualinterpretationoftheinteractionfortwovariablesandfacilitatedthelocationofoptimumexperimentalconditions.ByusingthesoftwareDesign-Expert,thesolvedopti-mumvaluesofthetestedvariablesfortheextractionofresveratrolwereextractiontemperatureof46.6°C,CaOtorawmaterialratioof6:100,watertorawmaterialratioof8.8:1andextractiontimeof51.7min.Undertheoptimalconditions,themaximumpredictedextractionratioofresveratrolwas0.903%,whichcorrespondedfairlywelltothatofrealextraction(0.897±0.035%,n=3).Theresultsuggestedthattheregressionmodelwasaccurateandade-quateforthepredictionofresveratrolextraction.3.6.ComparisonofMSCEandSPEAsdescribedabove,MSCEwascarriedoutbycreatingaconcen-trationdifferencebetweenthesolventandsolidsamples.IntheMSCEprocess,theconcentrationofresveratrolwasdynamicgradi-entcourseandenhancedcontinuouslyinfourextractionunitsbystages.Ithasbeenreportedthatmasstransferfromthesamplesurfacetotheliquidphaseisresultedmainlyfromthediffusionfromoneregiontoanotherregionofdifferentconcentrations(Geller&Hunt,1993;J?nsson,L?vkvist,Audunsson,&Nilvé,1993).OnthebasisofFick’s?rstlawforsteady-stateconditionstates,themasstransfer?uxbyordinarymoleculardiffusionisequaltotheproductofthediffusioncoef?cient(diffusivity)andthenegativediffusionwiththeconcentrationgradientincreased(Docˇekalová&Divi?,2005;Straub,Graue,Heitmeir,Nebendahl,&Wurst,1987;Ujihara,Fujiwara,Sazaki,Usami,&Nakajima,2002).Therefore,MSCEcouldgreatlyfacilitatemasstransferbetweenimmisciblephasesthroughtheincreaseofthedrivingforce,resultinhigherextractionef?ciency.InordertoevaluatetheadvantagesanddisadvantagesofMSCE,acomparisonofMSCEandSPEwasperformedbasedonthedifferenceofextractiontem-perature,extractionratio,consumptionoftime,andconsumptionofsolventandCaO,withsamesamples,solventandCaO.TheexperimentalresultwasshowninTable3.AlthoughtheextractionratioofresveratrolfromMSCEwasslightlylowerthanthatofSPEoperationwithinsigni?cantdifference(P>0.05),MSCEofferedoverwhelmingadvantageswithrespecttoextractiontemperature,extractiontime,andconsumptionofsolventandCaO.Forthesameweightofsamples,MSCEwascompleteinaboutfour-?fthofextractiontime,usinghalftheamountofCaOandonethirdof8.8b0.06b0.897±0.03524.00.150.908±0.041theamountofsolventrelativetoSPE.Moreover,theSPEtechniquehadtheextractiontemperatureof60°ChigherthanMSCEprocess.ThismayduetoafterheatandredundantCaOofpreviousunitswerereusedalongwithcountercurrentoperationofthesolventintheMSCEprocess.ThesefactsindicatedthatSPEneedslongerextractiontime,higherextractiontemperature,andmoreextractionsolventsandCaOtoobtaintheequivalentamountofresveratrolrelativetoMSCE.HigherconsumptionofsolventandCaO,meaninglowerres-veratrolconcentrationandmoreCaOresiduesinextractionsolu-tion,wouldinevitablyresultinmoreenergyandacidcostforthesubsequentconcentrationandacidicprecipitationprocess.There-fore,MSCEisatime-saving,energy-saving,andcost-savingextrac-tiontechnologyformanufacturingextractionofresveratrolfrompeanutsprouts.4.ConclusionsBasedonsingle-factorexperiments,BBDwasemployedtodeterminetheoptimalparametersforextractionofresveratrolinthispaper.Throughoptimization,theoptimizedconditionsweregainedasfollows:extractiontemperatureof46.6°C,CaOtorawmaterialratioof6:100,watertorawmaterialratioof8.8:1andextractiontimeof51.7min.Undertheseconditions,theextractionratioofresveratrolwas0.897±0.035%,whichwasclosetothepre-dictedvalue(0.903%).ComparedwithSPE,MSCEwasfaster,workedatlowertemperatures,andconsumedlesssolventandCaO,whichgivesMSCEanoverwhelmingadvantagefortheextrac-tionofresveratrolfrompeanutsprouts.AcknowledgementsThisworkwaspartlysupportedbytheNationalNaturalScienceFoundationofChina(No.81460435),KeyProjectsofAppliedbasicResearchofYunnanProvince(No.2014FA022),ProjectsofApplica-tionandTechnologyResearch(Agriculture)ofHuaian(No.HAN2014026)andOpenFundProjectofJiangsuProvincialEngi-neeringLaboratoryforBiomassConversionandProcessIntegration(No.JPELBCPL2013008).ReferencesAlexandre,M.,&Dubois,P.(2000).Polymer-layeredsilicatenanocomposites:Preparation,propertiesandusesofanewclassofmaterials.MaterialsScienceandEngineering:R:Reports,28,1–63.Bezerra,M.A.,Santelli,R.E.,Oliveira,E.P.,Villar,L.S.,&Escaleira,L.A.(2008).Responsesurfacemethodology(RSM)asatoolforoptimizationinanalyticalchemistry.Talanta,76,965–977.Docˇekalová,H.,&Divi?,P.(2005).Applicationofdiffusivegradientinthin?lmstechnique(DGT)tomeasurementofmercuryinaquaticsystems.Talanta,65,1174–1178.Egüés,I.,Sanchez,C.,Mondragon,I.,&Labidi,J.(2012).Effectofalkalineandautohydrolysisprocessesonthepurityofobtainedhemicellulosesfromcornstalks.BioresourceTechnology,103,239–248.Frémont,L.(2000).Biologicaleffectsofresveratrol.LifeSciences,66,663–673.Q.Zhangetal./FoodChemistry179(2015)15–2525Guo,X.,Zou,X.,&Sun,M.(2010).OptimizationofextractionprocessbyresponsesurfacemethodologyandpreliminarycharacterizationofpolysaccharidesfromPhellinusGül?in,_igniarius.CarbohydratePolymers,80,344–349.I.(2010).Antioxidantpropertiesofresveratrol:Astructure–activityinsight.InnovativeFoodScience&EmergingTechnologies,11,210–218.Geller,J.,&Hunt,J.(1993).Masstransferfromnonaqueousphaseorganicliquidsinwater-saturatedporousmedia.WaterResourcesResearch,29,833–845.He,L.,Gongke,L.,&Zhan,X.Z.(2003).Effectsofoperatingparametersontheextractionofresveratrolinhuzhang(Polygonumcuspidatum)usingmicrowave-assistedextraction.ChineseJournalofAnalyticalChemistry,31,1341–1344.Hsu,S.Y.(1995).Optimizationofthesurimiprocessingsystemwithacentralcompositedesignmethod.JournalofFoodEngineering,24,101–111.Iwuchukwu,O.F.,&Nagar,S.(2008).Resveratrol(trans-resveratrol,3,5,40-trihydroxy-trans-stilbene)glucuronidationexhibitsatypicalenzymekineticsinvariousproteinsources.DrugMetabolismandDisposition,36,322–330.Jiang,C.X.,Wang,M.,Liu,J.,Gan,D.,&Zeng,X.X.(2011).Extraction,preliminarycharacterization,antioxidantandanticanceractivitiesinvitroofpolysaccharidesfromCyclinasinensis.CarbohydratePolymers,84,851–857.J?nsson,J.?.,L?vkvist,P.,Audunsson,G.,&Nilvé,G.(1993).Masstransferkineticsforanalyticalenrichmentandsamplepreparationusingsupportedliquidmembranesina?owsystemwithstagnantacceptorliquid.AnalyticaChimicaActa,277,9–24.Liu,D.C.,&Liu,Q.(2004).Akindofpolyphenoliccompounds:Developmentandresearchofresveratrol.ChinaOilsandFats,29,9–11.Malovaná,S.,Garc?a-Montelongo,F.,Pérez,J.,&Rodr?guez-Delgado,M.(2001).Optimisationofsamplepreparationforthedeterminationoftrans-resveratrolandotherpolyphenoliccompoundsinwinesbyhighperformanceliquidchromatography.AnalyticaChimicaActa,428,245–253.Muralidhar,R.,Chirumamila,R.,Marchant,R.,&Nigam,P.(2001).AresponsesurfaceapproachforthecomparisonoflipaseproductionbyCandidacylindraceausingtwodifferentcarbonsources.BiochemicalEngineeringJournal,9,17–23.Nevado,J.B.,Salcedo,A.C.,&Pe?alvo,G.C.(1999).Simultaneousdeterminationofcis-andtrans-resveratrolinwinesbycapillaryzoneelectrophoresis.Analyst,124,61–66.Pascual-Martl,M.,Salvador,A.,Chafer,A.,&Berna,A.(2001).Supercritical?uidextractionofresveratrolfromgrapeskinofVitisviniferaanddeterminationbyHPLC.Talanta,54,735–740.Petrovski,G.,Gurusamy,N.,&Das,D.K.(2011).Resveratrolincardiovascularhealthanddisease.AnnalsoftheNewYorkAcademyofSciences,1215,22–33.Pi?eiro,Z.,Palma,M.,&Barroso,C.(2006).Determinationoftrans-resveratrolingrapesbypressurisedliquidextractionandfasthigh-performanceliquidchromatography.JournalofChromatographyA,1110,61–65.Qiao,D.,Hu,B.,Gan,D.,Sun,Y.,Ye,H.,&Zeng,X.(2009).Extractionoptimizedbyusingresponsesurfacemethodology,puri?cationandpreliminarycharacterizationofpolysaccharidesfromHyriopsiscumingii.CarbohydratePolymers,76,422–429.Rabesiaka,M.,Rakotondramasy-Rabesiaka,L.,Mabille,I.,Porte,C.,&Havet,J.L.(2011).Extractionoftrans-resveratrolfromredwineandoptimizationbyresponsesurfacemethodology.SeparationandPuri?cationTechnology,81,56–61.Rudolf,J.,&Resurreccion,A.(2007).Optimizationoftrans-resveratrolconcentrationandsensorypropertiesofpeanutkernelsbyslicingandultrasoundtreatment,usingresponsesurfacemethodology.JournalofFoodScience,72,S450–S462.Santos,J.A.,Carvaho-Gustavo,S.G.,Oliveira,V.,Raposo-Nadia,R.B.,&Silva,A.D.(2013).Resveratrolandanalogues:areviewofantioxidantactivityandapplicationstohumanhealth.RecentPatentsonFood,Nutrition&Agriculture,5,144–153.Smoliga,J.M.,Baur,J.A.,&Hausenblas,H.A.(2011).Resveratrolandhealth–Acomprehensivereviewofhumanclinicaltrials.MolecularNutrition&FoodResearch,55,1129–1141.Sobolev,V.S.,&Cole,R.J.(1999).Trans-resveratrolcontentincommercialpeanutsandpeanutproducts.JournalofAgriculturalandFoodChemistry,47,1435–1439.Soria,A.C.,&Villamiel,M.(2010).Effectofultrasoundonthetechnologicalpropertiesandbioactivityoffood:Areview.TrendsinFoodScience&Technology,21,323–331.Straub,D.,Graue,R.,Heitmeir,F.,Nebendahl,P.,&Wurst,T.K.(1987).Fick’sFirstLawCorrectionbyanexactsolutionoftheboltzmannequation.Propellants,Explosives,Pyrotechnics,12,105–112.Ujihara,T.,Fujiwara,K.,Sazaki,G.,Usami,N.,&Nakajima,K.(2002).Newmethodformeasurementofinterdiffusioncoef?cientinhightemperaturesolutionsbasedonFick’s?rstlaw.JournalofCrystalGrowth,241,387–394.Veloso,G.,Krioukov,V.,&Vielmo,H.(2005).Mathematicalmodelingofvegetableoilextractioninacounter-currentcrossed?owhorizontalextractor.JournalofFoodEngineering,66,477–486.Wang,Q.E.,Ma,S.,Fu,B.,Lee,F.S.,&Wang,X.(2004).Developmentofmulti-stagecountercurrentextractiontechnologyfortheextractionofglycyrrhizicacid(GA)fromlicorice(GlycyrrhizauralensisFisch).BiochemicalEngineeringJournal,21,285–292.Xie,Z.,Liu,X.,Chen,Y.,&Wang,L.(2009).Pilot-scalemulti-stagecountercurrentextractionofscutellareinfromErigeronbreviscapus(vant.)Hand-Mazz.SeparationScienceandTechnology,44,1250–1260.Xiong,Q.P.,Li,X.,Zhou,R.Z.,Hao,H.R.,Li,S.L.,Jing,Y.,Zhu,C.,Zhang,Q.H.,&Shi,Y.Y.(2014).Extraction,characterizationandantioxidantactivitiesofpolysaccharidesfromE.corneumgigeriaegalli.CarbohydratePolymers,108,247–256.Xiong,Q.P.,Zhang,Q.H.,&Shi,Y.Y.(2010).Studyonpilottestsinmulti-stagecountercurrentextractionofresveratrolfromPolygonumcuspidatum.ChineseJournalofModernAppliedPharmacy,10,901–905.Xiong,Q.P.,Zhang,Q.H.,Zhang,D.Y.,Shi,Y.Y.,Jiang,C.X.,&Shi,X.J.(2014).Preliminaryseparationandpuri?cationofresveratrolfromextractofpeanut(Arachishypogaea)sproutsbymacroporousadsorptionresins.FoodChemistry,145,1–7.Yang,B.P.,Ou-Yang,W.Q.,Wu,X.J.,&Hu,Y.(2008).Preparationandqualityevaluationofresveratrolnanoemulsion.ActaAgriculturaeBoreali-occidentalisSinica,17,20–23.Yu,C.H.,Chen,J.,Xiong,Y.K.,Li,X.X.,Dai,X.Y.,&Shi,C.C.(2012).Optimizationofmulti-stagecountercurrentextractionofantioxidantsfromGinkgobilobaL.leaves.FoodandBioproductsProcessing,90,95–101.Zhang,D.Y.,Li,S.J.,Xiong,Q.P.,Jiang,C.X.,&Lai,X.P.(2013).Extraction,characterizationandbiologicalactivitiesofpolysaccharidesfromAmomumvillosum.CarbohydratePolymers,95,114–122.Zhang,Q.H.,Xiong,Q.P.,&Shi,Y.Y.(2009).Optimizationoftheextractionandpuri?cationtechnologyofresveratroifromPolygonumcuspidatumbyorthogonalexperiment.ChinaPharmacy,12,909–911.