对于非立方晶系,由于对称性改变,晶面族所包括的晶面数目就不一样。例如正交晶系,晶面(100),(010)和(001)并不是等同晶面,不能以{100}族来包括。
与晶面族类似,晶体中因对称关系而等同的各组晶向可归并为一个晶向族,用
以后,在讨论晶体的性质(或行为)时,若遇到晶面族或晶向族符号,那就表示该性质(或行为)对于该晶面族中的任一晶面或该晶向族中的任一晶向都同样成立,因而没有必要区分具体的晶面或晶向。
另外,在立方晶系中,具有相同指数的晶向和晶面必定是相垂直的,即[hkl]⊥(hkl)。 4.六方晶系指数表示
上面我们用三个指数表示晶面和晶向。这种三指数表示方法,原则上适用于任意晶系。对六方晶系,取a,b,c为晶轴,而a轴与b轴的夹角为120°,c轴与a,b轴相垂直,如图9所示。
图9 六方晶体的等价晶面和晶向指数
但是,用三指数表示六方晶系的晶面和晶向有一个很大的缺点,即晶体学上等价的晶面和晶向不具有类似的指数。这一点可以从图9看出。图中六棱柱的两个相邻表面(红面和绿面)是晶体学上等价的晶面,但其密勒指数却分别是(110)和(100)。图中夹角为60°的两个密排方向D1和D2是晶体学上的等价方向,但其晶向指数却分别是[100]和[110]。 由于等价晶面或晶向不具有类似的指数,人们就无法从指数判断其等价性,也无法由晶面族或晶向族指数写出它们所包括的各种等价晶面或晶向,这就给晶体研究带来很大的不便。为了克服这一缺点,或者说,为了使晶体学上等价的晶面或晶向具有类似的指数,对六方晶体来说,就得放弃三指数表示,而采用四指数表示(密勒-布拉菲指数)。
四指数表示是基于4个坐标轴:a1,a2,a3和c轴,如图10所示,其中,a1,a2和c轴就是原胞的a,b和c轴,而a3=-(a1+a2)。下面就分别讨论用四指数表示的晶面及晶向指数。
图10 六方晶体的四轴系统 (1)六方晶系晶面指数的标定
六方晶系晶面指数的标定原理和方法同立方晶系中的一样,从待标晶面在a1,a2,a3
和c轴上的截距可求得相应的指数h,k,i,l,于是晶面指数可写成(hkil)。
根据几何学可知,三维空间独立的坐标轴最多不超过三个。应用上述方法标定的晶面指数形式上是4个指数,但是不难看出,前三个指数中只有两个是独立的,它们之间有以下的关系:i = -( h + k ),因此,可以由前两个指数求得第三个指数。
六方晶体中常见晶面及其四指数(亦称六方指数)标于图11中。从图看出,采用四指数后,同族晶面(即晶体学上等价的晶面)就具有类似的指数。例如:
价面(Ⅰ型棱柱面)。
共6个等共6个等
价面(Ⅱ型棱柱面)。
而{0001}只包括(0001)一个晶面,称为基面。六方晶体中比较重要的晶面族还有
,请读者写出其全部等价面。
图11 六方晶体中常见的晶面 (2)六方晶系晶向指数的标定
采用四轴坐标,六方晶系晶向指数的标定方法如下:当晶向通过原点时,把晶向沿四个轴分解成四个分量,晶向OP可表示为:OP=ua1+va2+ta3+wC,晶向指数用[uvtw]表示,其中t=-(u+v)。原子排列相同的晶向为同一晶向族,图12中a1轴为[2110],a2轴[1210],a3轴[1120]均属〈2110〉,其缺点是标定较麻烦。可先用三轴制确定晶向指数[UVW],再利用公式转换为[uvtw]。采用三轴坐标系时。C轴垂直底面,a1、a2轴在底面上,其夹角
o
为120,如图12,确定晶向指数的方法同前。采用三轴制虽然指数标定简单,但原子排列相同的晶向本应属于同一晶向族,其晶向指数的数字却不尽相同,例如[100],[010],[110],见图12。
图12 六方晶系的一些晶面与晶向指数
六方晶系按两种晶轴系所得的晶向指数可相互转换如下u?1,3(2U?V),t??(u?v),w?W。例如,[110]→[1120],[100]→[2110],v?13(2V?U)[010]→[1210],这样等同晶向的晶向指数的数字都相同。
标定方法通常采用行走法。用行走法确定六方晶体的四轴晶向指数时,会遇到一个新的问题,即解是不唯一的。例如,a1轴的指数可以是以是
,也可以是[2000];a2轴的指数可
,也可以是[0200]。分析各种等价晶向的四指数后发现,要想使等价晶向具有
类似的四指数,就需要人为地附加一个条件,即前三个指数之和为零。若将晶向指数写成[UVTW],则上述附加条件可写成:U+V+T=0,或T=-(U+V)。按照这个附加条件,上述a1轴的指数就应该是
,而不是[2000];同样,a2和a3轴的指数分别是
和,
。 等
图13中标出了六方晶体中各重要晶向的四指数,它们是[0001],等。
图13 六方晶体中常见的晶向
除上述几个特殊晶向外,对一般的晶向,很难直接求出四指数[UVTW],因为很难保证在沿a1,a2,a3和c轴分别走了U,V,T和W步后既要到达晶向上的另一点,又要满足条件T=-(U+V)。比较可靠的标注指数方法是解析法。该法是先求出待标晶向在a1,a2和c三个轴下的指数u,v,w(这比较容易求得),然后按以下公式算出四指数U,V,T,W。
T = - (U + V)
(1-1)