»ùÓÚÏ¡Êè±íʾµÄͼÏñÈ¥ÔëËã·¨Ñо¿ ÏÂÔر¾ÎÄ

Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ

±ÏÒµÉè¼Æ˵Ã÷Êé

»ùÓÚÏ¡Êè±íʾµÄͼÏñÈ¥ÔëËã·¨Ñо¿

ÖìÏé ѧÉúÐÕÃû£º ѧºÅ£º1005014240 ¹âµç¹¤³Ìϵ ϵ ±ð£º µç×ÓÐÅÏ¢¿ÆѧÓë¼¼Êõ ר Òµ£º Ñîѧ·å

Ö¸µ¼½Ìʦ£º

2014Äê6ÔÂ

Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ

ÖÐ ÎÄ Õª Òª

ͼÏñÈ¥ÔëÊÇÐźŴ¦ÀíÁìÓòÖеÄÒ»¸öÖØÒªÑо¿¿ÎÌ⣬ϡÊè±íʾÀíÂÛµÄÑо¿Ëæ׎üÄêÀ´ÐËÆðµÄѹËõ´«¸ÐÀíÂÛ£¬Ô½À´Ô½ÒýÆðÑо¿Ñ§ÕßµÄÖØÊÓ¡£Òò´Ë»ùÓÚÏ¡Êè±íʾµÄͼÏñÈ¥Ôë³ÉΪ½üÄêÀ´¸ÃÁìÓòµÄÒ»¸öÇ°ÑØÑо¿¿ÎÌâ¡£

±¾ÎÄÔÚÉîÈëÑо¿ÁËÏ¡Êè±íʾÀíÂÛ¼°Ïà¹ØÖع¹Ëã·¨µÄ»ù´¡ÉÏ£¬½«Ð¡²¨È¥Ôëת»¯ Ϊһ¸ö×îÓÅ»¯ÎÊÌ⣬´Ó¶ø½¨Á¢ÁË»ùÓÚÏ¡Êè±íʾµÄÈ¥ÔëÄ£ÐÍ¡£ÎÄÖзֱð²ÉÓÃÁË×îË٠Ͻµ·¨ºÍOMPÖع¹Ëã·¨£¬Í¨¹ý»Ö¸´Ð¡²¨ÏµÊýµÄÏ¡ÊèÐÔ£¬´ïµ½È¥³ýÔëÉùµÄÄ¿µÄ¡£

±¾ÎĵÄÖ÷Òª¹¤×÷ÈçÏ£º

½¨Á¢Ò»ÖÖ»ùÓÚÏ¡Êè±íʾµÄС²¨È¥ÔëÄ£ÐÍ¡£½«Ð¡²¨È¥ÔëµÄÎÊÌâת»¯ÎªÒ»¸ö×îÓÅ »¯ÎÊÌ⣬ͨ¹ýÇó½â¸ÃÎÊÌ⣬µÃµ½²»º¬ÔëÉùµÄС²¨ÏµÊý£¬×îÖմﵽȥ³ýÔëÉùµÄÄ¿µÄ¡£ ÀûÓÃ×îËÙϽµ·¨Çó½âÉÏÊöÎÊÌ⣬ʵÏÖÐźÅÓëͼÏñµÄÈ¥Ôë¡£¸Ã·½·¨½«Ð¡²¨ÏµÊý×÷Ϊһ¸öÕûÌå½øÐÐÇó½â£¬ÀûÓÃÁËС²¨ÏµÊýµÄÕûÌåÌØÐÔ£¬¿Ë·þÁËС²¨ãÐֵȥÔë½ö¶ÔϵÊýÖðµã´¦ÀíµÄȱµã¡£ÊµÑé½á¹û±íÃ÷£¬¸ÃËã·¨ÇÐʵÓÐЧ£¬ÌرðÊÇÕë¶ÔµÍÐÅÔë±ÈÐźźÍͼÏñ£¬±íÏÖ³öºÜºÃµÄЧ¹û¡£

ÀûÓÃOMPÖع¹Ëã·¨Óëµü´úãÐֵ˼ÏëÀ´ÊµÏÖÐźÅÓëͼÏñÈ¥Ôë¡£ÓÉÓÚOMPËã·¨½öÊÊÓÃÓÚͼÏñÖع¹£¬²»¾ßÓÐÈ¥ÔëÐÔÄÜ£¬Îª´ËÎÒÃÇÔÚOMPËã·¨µü´úµÄ¹ý³ÌÖУ¬ÒýÈëÁ˵ü´úãÐÖµµÄ˼Ï룬²»¶Ï¸ÉÔ¤Öع¹Ð¡²¨ÏµÊý£¬Ê¹Æä¸ü¾ßÏ¡ÊèÐÔ¡£ÊµÑé½á¹û±íÃ÷£¬¸Ã·½·¨¶ÔһάÐźŽøÐд¦ÀíµÄЧ¹û¸üÃ÷ÏÔ¡£

¹Ø¼ü´Ê£ºÍ¼ÏñÈ¥Ô룻ϡÊè±íʾ£»×îËÙϽµ·¨£»OMPËã·¨

Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ

ABSTRACT

Image denoising is one of the important branches in the field of signal processing£®Sparse representation has also attracted researchers¡¯attention recently especially with the development of the new compressed sensing theory£®Therefore image denoising based on sparse representation becomes one of the frontier issues in signal processing£®

The main contributions of this paper are as follows£ºA new wavelet denoising model based on sparse representation is presented£®The traditional wavelet denoising problem is converted to all optimization problem£®And Then the noise¡ªfree wavelet coefficients are obtained by solving the optimization problem£®

The steepest descent method is used to solve the problem above and Thus complement the signal and image denoising£®This method considers the overall wavelet coefficients as a whole and makes use of the structure properties of the coefficients£®It greatly overcomes the shortcomings of the wavelet thresholding method which deals with the wavelet coefficients in a point-wise manner£®The experimental results show that the algorithm

is efficient especially for those signal sand images with low signal to noise ratios£®

An idea of the iterative threshold is introduced to OMP algorithm for signal and image denoising£®As the OMP algorithm is only effective for image reconstruction and doesn¡¯t have the denoising property,the idea of the iterative threshold is introduced in the iterative process of the OMP algorithm£¬which could make the reconstructed wavelet coefficients sparser£®The experimental results show that the method is efficient for one-dimensional signal denoising£®

KEYWORDS£ºImage Denoising£»Sparse Representation£»Steepest descent method£»OMP algorithm

Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ

CLASSNO£ºTN911£®7

Ŀ ¼

1 Ð÷ÂÛ............................................................. 1

1.1 Ñо¿±³¾°ºÍÒâÒå .............................................. 1 1.2 ¹úÄÚÍâÑо¿ÏÖ×´ .............................................. 1 1.3 ±¾ÎÄÄÚÈÝÓë½á¹¹ .............................................. 2 2 ͼÏñÈ¥Ôë×ÛÊö..................................................... 2

2.1 ÒýÑÔ ....................................................... 2 2.2 ´«Í³Í¼ÏñÈ¥Ôë·½·¨ ............................................ 5 2.3 ¾­µäС²¨È¥Ôë·½·¨ ........................................... 6

2.3.1 С²¨È¥Ôë·½·¨Ä£ÐͺÍÌصã................................. 6 2.3.2 С²¨È¥Ôë·½·¨........................................... 7 2.3.3 С²¨ãÐֵȥÔë·¨......................................... 8 2.4 ±¾ÕÂС½á .................................................. 12 3 Ï¡Êè±íʾµÄͼÏñÈ¥Ôë.............................................. 13

3.1 С²¨±ä»»ÀíÂÛ ............................................... 13

3.1.1 ¶à·Ö±æ·ÖÎö............................................ 13 3.1.2 ÀëɢС²¨±ä»».......................................... 14 3.2 Ï¡Êè±íʾÀíÂÛ .............................................. 16 3.3 »ùÓÚÏ¡Êè±íʾµÄͼÏñÈ¥ÔëÄ£ÐÍ ................................ 19 3.4 ×îËÙϽµ·¨Í¼ÏñÈ¥Ôë ........................................ 21

3.4.1 ×îËÙϽµ·¨ÀíÂÛ........................................ 21 3.4.2 ×îËÙϽµ·¨È¥ÔëÄ£ÐÍ.................................... 22 3.4.3 È¥ÔëËã·¨²½Öè.......................................... 23 3.4.4 ×îËÙϽµ·¨ÊµÑé½á¹û¼°·ÖÎö............................. 24 3.5 »ùÓڸĽøµÄOMPÖع¹Ë㷨ͼÏñÈ¥Ôë ............................ 31

3.5.1 OMPÖؽ¨Ëã·¨ .......................................... 31 3.5.2 »ùÓڸĽøµÄOMPͼÏñÈ¥ÔëËã·¨²½Öè....................... 32