BEAM188µ¥ÔªÖÐÎÄ˵Ã÷ ÏÂÔØ±¾ÎÄ

Beam188ÌṩÁ˽ØÃæÏà¹Ø²ÎÊý£¨Ãæ»ý£¬Î»Ö㬷ֲ¼º¯Êý£¬µ¼ÊýµÈµÈ£©¿ÉÒÔͨ¹ýSECTYPE and SECDATAÃüÁîʹÓÃÓÚ¶¨Òå½ØÃæ¡£Ã¿¸ö½ØÃæ¼Ù¶¨ÓÉÔ¤¶¨µÄ9¸ö½Úµãµ¥Î»×é³É¡£ÏÂͼÁоÙÁËͨ¹ý¾ØÐÎ×ÓÏîºÍͨµÀ×ÓÏÁ¢Ä£ÐÍ£¬Ã¿¸ö½ØÃæµ¥ÔªÓÐ4¸ö»ý·Öµã£¬Ã¿¸ö»ý·Öµã¿ÉÉèÖöÀÁ¢µÄ²ÄÁÏÊôÐÔ¡£

Figure 188.4 Cross-Section Cells ͼ188.4£ºBeam188½ØÃæµ¥Ôª¸ñ

BEAM188 provide options for output at the section integration points and/or section nodes. You can request output only on the exterior boundary of the cross-section. (PRSSOL prints the section nodal and section integration point results. Stresses and strains are printed at section nodes, and plastic strains, plastic work, and creep strains are printed at section integration points.)

Beam188ÌṩÔÚ»ý·ÖµãºÍ½çÃæ½ÚµãÊä³öµÄÑ¡Ïî¡£Äã¿ÉÒÔÒªÇó½öÔÚ½ØÃæµÄÍâ±íÃæÊä³ö¡££¨PRSSOL ´òÓ¡½ØÃæ½ÚµãºÍ½ØÃæ»ý·Öµã½á¹û¡£Ó¦Á¦ºÍÓ¦±äÔÚ½ØÃæµÄ½ØÃæ´òÓ¡£¬ËÜÐÔÓ¦±ä£¬ËÜÐÔ×÷Óã¬Èä±äÓ¦Á¦ÔÚ½ØÃæµÄ»ý·ÖµãÊä³ö£©¡£

When the material associated with the elements has inelastic behavior or when the temperature varies across the section, constitutive calculations are performed at the section integration points. For more common elastic applications, the element uses precalculated properties of the section at the element integration points. However, the stresses and strains are calculated in the output pass at the section integration points.

µ±Óëµ¥ÔªÏà¹ØµÄ²ÄÁÏÓзǵ¯ÐÔµÄÐÐΪ»òÕßµ±½ØÃæµÄζÈÓб仯£¬»ù±¾¼ÆËãÔÚ½ØÃæµÄ»ý·ÖµãÉÏÔËÐС£¶ÔÓÚ¸ü¶àµÄ³£¼ûµÄµ¯ÐÔµÄÔËÓ㬵¥ÔªÔËÓÃÔ¤ÏȼÆËãºÃµÄµ¥Ôª»ý·ÖµãÉϵĽØÃæÊôÐÔ¡£ÎÞÂÛÈçºÎ£¬Ó¦Á¦ºÍÓ¦±äͨ¹ý½ØÃæµÄ»ý·ÖµãÊä³öÀ´¼ÆËã¡£

If the section is assigned the subtype ASEC, only the generalized stresses and strains (axial force, bending moments, transverse shears, curvatures, and shear strains) are

available for output. 3-D contour plots and deformed shapes are not available. The ASEC subtype can be displayed only as a thin rectangle to verify beam orientation.

Èç¹û½ØÃæÖ¸¶¨ÎªASEC ×ÓÏ½ö½ö¹ãÒåµÄÓ¦Á¦ºÍÓ¦±ä£¨ÖáÁ¦¡¢Íä¾à¡¢ºáÏò¼ôÇС¢ÍäÇú¡¢¼ôÓ¦Á¦£©Äܹ»Êä³ö¡£3£­D ÂÖÀªÏߺͱäÐÎÐÎ×´²»ÄÜÊä³ö¡£ASEC ×ÓÏî½ö½ö¿ÉÒÔ×÷Ϊ±¡¾ØÐÎÀ´È϶¨ÁºµÄ·½Ïò¡£

BEAM188 allow for the analysis of built-up beams, (i.e., those fabricated of two or more pieces of material joined together to form a single, solid beam). The pieces are assumed to be perfectly bonded together. Therefore, the beam behaves as a single member.

Beam188 Äܹ»¶Ô×éºÏÁº½øÐзÖÎö£¬£¨ÀýÈ磬ÄÇЩÓÉÁ½ÖÖ»òÕßÁ½¸öÒÔÉϲÄÁϸ´ºÏ¶ø³ÉµÄ¼òµ¥µÄʵÌåÁº£©¡£ÕâЩ×é¼þ±»¼ÙÉèΪÍêÈ«¹Ì½ÓÔÚÒ»ÆðµÄ¡£Òò´Ë£¬¸ÃÁº±íÏÖΪµ¥Ò»µÄ¹¹¼þ¡£

The multi-material cross-section capability is applicable only where the assumptions of a beam behavior (Timoshenko or Bernoulli-Euler beam theory) holds.

¶à²ÄÁϽØÃæÄÜÁ¦½ö½öÔÚÁºµÄÐÐΪ¼Ù¶¨£¨ÌúľÐÁ¸ç»òÕß²®Å¬Á¦Å·À­ÁºÀíÂÛ£©³ÉÁ¢µÄʱºòÄÜÔËÓá£

In other words, what is supported is a simple extension of a conventional Timoshenko beam theory. It may be used in applications such as:

»»ÑÔÖ®£¬Ö§³Ö¼òµ¥µÄ´«Í³ÌúľÐÁ¸çÁºÀíÂÛµÄÀ©Õ¹¡£¿ÉÓ¦ÓÃÓÚÒÔÏ·½Ã棺

? ? ? ? ? ?

bimetallic strips Ë«²ã½ðÊô´ø

beams with metallic reinforcement ´ø½ðÊô¼Ó¹ÌµÄÁº

sensors where layers of a different material has been deposited λÓÚ²»Í¬²ÄÁÏ×é³ÉµÄ²ãÉϵĴ«¸ÐÆ÷

BEAM188 do not account for coupling of bending and twisting at the section stiffness level. The transverse shears are also treated in an uncoupled manner. This may have a significant effect on layered composite and sandwich beams if the layup is unbalanced.

Beam188²»»á¼ÆËãÔÚ½ØÃæ¸Õ¶ÈˮƽÉϵÄÍä¾àºÍŤ¾àµÄñîºÏ¡£ºáÏòµÄ¼ôÇÐÒ²×÷Ϊһ¸ö¶ÀÁ¢µÄÁ¿À´¼ÆËã¡£Õâ¶ÔÓÚ·Ö²ãµÄ×éºÏÎïºÍ¼Ð²ãÁ¿¿ÉÄÜ»áÓкܴóµÄÓ°Ï죬Èç¹û½ÓÍ·´¦²»Æ½ºâ¡£

BEAM188 do not use higher order theories to account for variation in distribution of shear stresses. Use ANSYS solid elements if such effects must be considered.

Beam188ûÓÐÓø߽×ÀíÂÛÀ´¼ÆËã¼ôÇÐÓ¦Á¦µÄ±ä»¯£¬Èç¹ûÕâЩ×÷ÓñØÐ뿼Âǵϰ£¬¾ÍÐèÒªÔËÓÃANSYS ʵÌåµ¥Ôª¡£

Always validate the application of BEAM188 for particular applications, either with experiments or other numerical analysis. Use the restrained warping option with built-up sections after due verification.

Ҫʹbeam188ÓÃÓÚÌØÊâµÄÓ¦Óã¬×öÊÔÑé»òÕ߯äËûµÄÊýÖµ·ÖÎö£¬ºÏÊÊÑéÖ¤ºóʹÓÃ×éºÏ½ØÃæµÄÔ¼ÊøÅ¤ÇúµÄÑ¡Ïî¡£

For the mass matrix and evaluation of consistent load vectors, a higher order

integration rule than that used for stiffness matrix is employed. The elements support both consistent and lumped mass matrices. Use LUMPM,ON to activate lumped mass matrix. Consistent mass matrix is used by default. An added mass per unit length may be input with the ADDMAS section controls. See \Summary\.

¶ÔÓÚÖÊÁ¿¾ØÕóºÍÒ»ÖºÉÔØÏòÁ¿µÄ¸³Öµ£¬½«Ê¹Óõ½±È¸Õ¶È¾ØÕóʹÓõĹæÔò¸ü¸ß½×µÄ»ý·Ö¹æÔò¡£µ¥ÔªÖ§³ÖÒ»ÖÂÖÊÁ¿¾ØÕóºÍ¼¯ÖÐÖÊÁ¿¾ØÕó¡£ÓÃLUMPM£¬ON ÃüÁîÀ´¼¤»î¼¯ÖÐÖÊÁ¿¾ØÕó¡£Ò»ÖÂÖÊÁ¿¾ØÕóÊÇĬÈÏʹÓõġ£Ã¿µ¥Î»³¤¶ÈµÄ¸½¼ÓÖÊÁ¿½«ÓÃADDMAS ½ØÃæ¿ØÖÆÀ´ÊäÈ룬Ïê¼û\¡£

Forces are applied at the nodes (which also define the element x-axis). If the

centroidal axis is not colinear with the element x-axis, applied axial forces will cause bending. Applied shear forces will cause torsional strains and moment if the centroid and shear center of the cross-section are different. The nodes should therefore be located at the desired points where you want to apply the forces. Use the OFFSETY and OFFSETZ arguments of the SECOFFSET command appropriately. By default, ANSYS uses the centroid as the reference axis for the beam elements.

Ôڽڵ㣨ÕâЩ½ØÃ涨ÒåÁ˵¥ÔªµÄx ÖᣩÉÏÊ©¼ÓÁ¦£¬Èç¹ûÖØÐÄÖáºÍµ¥ÔªµÄx Öá²»Êǹ²Ïߵģ¬Ê©¼ÓµÄÖáÁ¦½«²úÉúÍä¾à¡£Èç¹ûÖÊÐĺͼôÇÐÖÐÐIJ»ÊÇÖØºÏµÄ£¬Ê©¼ÓµÄ¼ôÇÐÁ¦½«µ¼ÖÂŤתӦÁ¦ºÍÍäÇú¡£Òò¶øÐèÒªÔÚÄÇЩÄãÐèҪʩ¼ÓÁ¦µÄλÖÃÉèÖýڵ㣬¿ÉÒÔʹÓÃsecoffset ÃüÁîÖеÄoffsety ºÍoffsetz ×Ô±äÁ¿¡£Ä¬Èϵģ¬ansys »áʹÓÃÁºµ¥ÔªµÄÖÊÐÄ×÷Ϊ²Î¿¼Öá¡£

Element loads are described in Node and Element Loads. Pressures may be input as surface loads on the element faces as shown by the circled numbers on Figure 188.1: \. Positive normal pressures act into the element. Lateral pressures are input as force per unit length. End \

µ¥ÔªºÉÔØÔÚNode and Element Loads ±»ÃèÊö¡£Ñ¹Á¦¿ÉÄܱ»×÷Ϊµ¥Ôª±íÃæÁ¦±»ÊäÈ룬¾ÍÏñͼ188.1ÖдøÈ¦µÄÊý×ÖËùʾ¡£ÕýµÄѹÁ¦Ö¸Ïòµ¥ÔªÄÚ²¿¡£Ë®Æ½Ñ¹Á¦×÷Ϊµ¥Ôª³¤¶ÈµÄÁ¦À´ÊäÈë¡£¶Ë²¿µÄѹÁ¦×÷ΪÁ¦ÊäÈë¡£

When KEYOPT(3) = 0 (default), BEAM188 is based on linear polynomials, unlike other Hermitian polynomial-based elements (for example, BEAM4). Refinement of the mesh is recommended in general.

µ±keyopt£¨3£©£½0 µÄʱºò£¨Ä¬ÈÏ£©£¬beam188 »ùÓÚÏßÐÔ¶àÏîʽ£¬ºÍÆäËûµÄ»ùÓÚ¶òÃܶàÏîʽµÄµ¥Ôª£¨ÀýÈçbeam4£©²»Í¬£¬Ò»°ãÀ´ËµÒªÇóÍø¸ñ»®·ÖҪϸ»¯¡£

When KEYOPT(3) = 2, ANSYS adds an internal node in the interpolation scheme, effectively making this a Timoshenko beam element based on quadratic shape functions. This option is highly recommended unless this element is used as a stiffener and you must maintain compatibility with a first order shell element.

Linearly varying bending moments are represented exactly. The quadratic option is similar to BEAM189, with the following differences:

µ±keyopt£¨3£©£½2£¬ansys Ôö¼ÓÁËÒ»¸öÖмä»ý·ÖµãÔÚÄÚ²åֵͼ±ê£¬ÓÐЧµÄʹµÃµ¥Ôª³ÉΪ»ùÓÚ¶þ´ÎÐ͹¦ÄܵÄÌúľÐÁ¸çÁº¡£Ç¿ÁÒÍÆ¼ö´ËÑ¡Ïî³ý·ÇÕâ¸öµ¥Ôª×÷Ϊ¸ÕÌåʹÓ㬶øÇÒ±ØÐëά³ÖºÍÒ»½×shell µ¥ÔªµÄ¼æÈÝÐÔ¡£¿É¾«È·µÄ±íÏÖÍä¾àÏßÐԱ仯¡£¶þ´ÎÑ¡ÏîºÍbeam189 ÏàËÆ£¬ÓÐÈçϵIJ»Í¬£º

The initial geometry is always a straight line with BEAM188 with or without the quadratic option.

? ²»ÂÛÊÇ·ñʹÓöþ´ÎÑ¡Ïbeam188 µ¥Ôª×î³õʼµÄ¼¸ºÎ×ÜÊÇÖ±Ïß¡£

? You cannot access the internal node; and thus boundary conditions/loading cannot be specified on those nodes.

? Äã²»ÄܶÁÈ¡Öмä½Úµã£¬ËùÒԱ߽çÌõ¼þ/ºÉÔØ²»ÄÜÔÚÄÇЩ½Úµã±»Ö¸¶¨¡£

?

Offsets in specification of distributed loads are not allowed. Non-nodal concentrated forces are not supported. Use the quadratic option (KEYOPT(3) = 2) when the element is associated with tapered cross-sections.

¾ù²¼ºÉÔØÊDz»ÔÊÐíÖ¸¶¨Æ«ÒƵġ£²»Ö§³Ö·Ç½ÚµãµÄ¼¯ÖÐÁ¦¡£µ±µ¥ÔªºÍÆõÐͽØÃæÏà¹ØÓ¦Ê¹Óöþ´ÎÑ¡Ïkeyopt £¨3£©£½2£©¡£

Temperatures may be input as element body loads at three locations at each end node of the beam. At each end, the element temperatures are input at the element x-axis (T(0,0)), at one unit from the x-axis in the element y-direction (T(1,0)), and at one unit from the x-axis in the element z-direction (T(0,1)). The first coordinate temperature T(0,0) defaults to TUNIF. If all temperatures after the first are

unspecified, they default to the first. If all temperatures at node I are input, and all temperatures at node J are unspecified, the node J temperatures default to the corresponding node I temperatures. For any other input pattern, unspecified temperatures default to TUNIF.

ζȿÉÒÔ×÷Ϊµ¥ÔªµÄÌåÁ¦ÔÚÁºµÄÿ¸ö¶Ë²¿½ÚµãµÄÈý¸öλÖÃÊäÈ룬µ¥ÔªµÄζÈÔÚµ¥ÔªµÄx Öá±»ÊäÈ루T£¨0£¬0£©,ºÍÔÚÀ뿪x ÖáÒ»¸öµ¥Ôª³¤¶ÈµÄy ÖᣨT£¨1£¬0£©£©£¬ ºÍÔÚÀ뿪x ÖáÒ»¸öµ¥Ôª³¤¶ÈµÄz ·½Ïò£¨T£¨0£¬1£©£©¡£µÚÒ»×ø±êζÈT£¨0£¬0£© ĬÈÏÊÇTUNIF¡£Èç¹ûËùÓеÄζÈÔÚµÚÒ»´ÎÒÔºóÊÇûÓб»Ö¸¶¨£¬ÄÇôËüÃÇĬÈϵľÍΪµÚÒ»´ÎÊäÈëµÄζȡ£Èç¹ûËùÓÐi ½ÚµãµÄζȾùÊäÈëÁË£¬j ½ÚµãµÄ¶¼Ã»ÓÐÖ¸Ã÷£¬ÄÇôj ½ÚµãµÄζÈĬÈϵÄÊǵÈÓÚi ½ÚµãµÄζȡ£¶ÔÓÚÆäËûµÄÊäÈëģʽ£¬Ã»ÓÐÖ¸Ã÷µÄζÈĬÈϵÄÊÇTUNIF¡£