(X)的取值只可能是g(x1),g(x2),?,g(xn),?,若g(xi)互不相等,则Y的分布列如下:
YP(Y?yi)g(x1),g(x2),?,g(xn),?p1,p2,?,pn,?Xx1,x2,?,xn,?P(X?xi)p1,p2,?,pn,?,
,
若有某些g(xi)相等,则应将对应的Pi相加作为g(xi)的概率。
例2.18:已知随机变量X的分布列为 X0,1,P13,13,213,
求Y?X2的分布列。
(2)X是连续型随机变量
先利用X的概率密度fX(x)写出Y的分布函数FY(y),再利用变上下限积分的求导公式求出fY(y)。
?2?(3x?1),0?x?1例2.19:已知随机变量X~f(x)??5,求Y?lnX的密度函数fY(y)。
?0,其他?
第二节 练习题
1、常见分布
例2.20:一个袋中有5只球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3个球中的最大号码,试求X的概率分布。
例2.21:设非负随机变量X的密度函数为f(x)=A x7e?x22,x>0,则A= 。
例2.22: f1(x)?f2(x)是概率密度函数的充分条件是: (1)f1(x),f2(x)均为概率密度函数 (2)0?f1(x)?f2(x)?1
例2.23:一个不懂英语的人参加GMAT机考,假设考试有5个选择题,每题有5个选项(单选),试求:此人答对3题或者3题以上(至少获得600分)的概率?
例2.24:设随机变量X~U(0,5),求方程4x2?4Xx?X?2?0有实根的概率。 例2.25:设随机变量X的概率密度为
?1?3,??f(x)??2,?9???0,x?[0,1]x?[3,6]
其他其使得P(X?k)?23,则k的取值范围是 。
例2.26:已知某种电子元件的寿命(单位:小时)服从指数分布,若它工作了900小时而未损坏的概率是
e?0.9,则该种电子元件的平均寿命是
A. 990小时 B. 1000小时 C. 1010小时 D. 1020小时
例2.27:设随机变量X的概率密度为:?(x)??1xe,??2(A)F(x)?????1,12e?|x|,(???x???)则其分布函数F(x)是
x?0, x?0.
?1x?2e,?(B)F(x)???1?x1?e?2?1?x?1?e,?2?(C)F(x)???1,??x?0,
x?0.x?0,
x?0.?1?x?2e,??1?x(D)F(x)??1?e,?2???1,.x?0,0?x?1, [ ]
x?1.例2.28:X~N(1,4),Y~N(2,9),问P(X≦-1)和P(Y≧5)谁大? 例2.29:X~N(μ,σ2),μ≠0,σ>0,且P(
x????)=
12?,则α=?
2、函数分布
例2.30:设随机变量X具有连续的分布函数F(x),求Y=F(X)的分布函数F(y)。 (或证明题:
设X的分布函数F(x)是连续函数,证明随机变量Y=F(X)在区间(0,1)上服从均匀分布。) 例2.31:设随机变量X的分布函数为F(x),则Y=-2lnF(X)的概率分布密度函数fY(y)= 例2.32:设X~U???? .
???2,?,并且y=tanx,求Y的分布密度函数f(y)。
2?例2.33:设随机变量X服从指数分布,则随机变量Y=min{X, 2}的分布函数
(A)是连续函数 (B)至少有两个间断点
(C)是阶梯函数
(D)恰好有一个间断点
第三章 二维随机变量及其分布
第一节 基本概念
1、二维随机变量的基本概念
(1)二维离散型随机变量联合概率分布及边缘分布
如果二维随机向量?(X,Y)的所有可能取值为至多可列个有序对(x,y)时,则称?为离散型随机量。理解:(X=x,Y=y)≡(X=x∩Y=y)
设?=(X,Y)的所有可能取值为(xi,yj)(i,j?1,2,?),且事件{?=(xi,yj)}的概率为pij,,称
P{(X,Y)?(xi,yj)}?pij(i,j?1,2,?)
为?=(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示: Y X x1 x2 ? y1 p11 p21 ? y2 p12 p22 ? ? ? ? ? ? yj p1j p2j ? ? ? ? ? pi2 p12 p22 ? xi ? pi1 ? ? ? ? ? pi2 ? p2j p21 p22 p2j ? 1 这里pij具有下面两个性质: (1)pij?0(i,j=1,2,?); (2)?i?jpij?1.
对于随机向量(X,Y),称其分量X(或Y)的分布为(X,Y)的关于X(或Y)的边缘分布。上表中的最后一列(或行)给出了X为离散型,并且其联合分布律为
P{(X,Y)?(xi,yj)}?pij(i,j?1,2,?),
则X的边缘分布为 Pi??P(X?xi)?Y的边缘分布为 P?i?P(Y?yi)??jpij(i,j?1,2,?);
?ipij(i,j?1,2,?)。
例3.1:二维随机向量(X,Y)共有六个取正概率的点,它们是:(1,-1),(2,-1),(2,0),2,2),(3,1),(3,2),并且(X,Y)取得它们的概率相同,则(X,Y)的联合分布及边缘分布为 Y
-1 0 1 2 p12 X 1 2 3 p2j
(2)二维连续型随机向量联合分布密度及边缘分布
对于二维随机向量??(X,Y),如果存在非负函数f(x,y)(???x???,???y???),使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D={(X,Y)|a 则称?为连续型随机向量;并称f(x,y)为?=(X,Y)的分布密度或称为X和Y的联合分布密度。 分布密度f(x,y)具有下面两个性质: ????(1) f(x,y)?0; (2) ??????f(x,y)dxdy?1. 一般来说,当(X