模型2的t统计量分别为
t????0.72
1
t???35.44
2 两模型的斜率系数均通过了t检验,说明M1t与M2t均与GDPt有线性关系,但模型2
的判定系数R2大于模型1的判定系数R2,具有较好的拟合优度,因此应选择模型2。 4.解:Y0的预测值为Y0 Y?0=10.0+0.9×250=235.0
Y0的95%的置信区间为
Y?0?t0.025·Se(Y?0)?Y0?Y?0?t0.025·Se(Y?0) Se(Y?1(X?X)21(2500)???n?0Σ(X?X)2?1012??100)24000?8.42
235.0-2.228×8.42 ≤Y0 ≤ 235.0+2.228×8.42 216.24 ≤Y0 ≤ 253.76
13
第三章 多元线性回归模型
练习题
一、单项选择题
1.在线性回归模型Yi=β1+β2X2i+β2X3i+ui中,β2表示( ) A.X3 i,ui保持不变条件下,X2每变化一单位时,Y的均值的变化。 B.任意情况下,X2每变化一单位时,Y的均值的变化。
C.X3 i保持不变条件下,X2每变化一单位时,Y的均值的变化。 D.ui保持不变条件下,X2每变化一单位时,Y的均值的变化。
2.在线性回归模型Yi=β1+β2X2i+β2X3i+ui中,β1的含义为( ) A.指所有未包含到模型中来的变量对Y的平均影响。 B.Yi的平均水平。 C.X2 i,X3 i不变的条件下,Yi的平均水平。
D.X2 i=0,X3 i=0时,Yi的真实水平。
3.在多元线性回归模型中,调整后的判定系数R与判定系数R2的关系为(
2)
A.R2<R C.R2≤R
22
B.R<R2 D.R≤R2
)
22
4.回归模型中不可使用的模型为(
A.R较高,回归系数高度显著; B.R较低,回归系数高度显著; C.R较高,回归系数不显著; D.R较低,回归系数显著。
22225.在回归模型Y=β1+β2X2+β3X3+β4 X4+u中,X3与X4高度相关,X2与X3,X4无
?的方差( ) 关,则因为X3与X4的高度相关会使?2 A.变大 B.变小
C.不确定 D.不受影响 6.在回归模型Y=β1+β2X2+β3X3+β4 X4+u中,如果原假设H0:β2 = 0成立,则意味着( )
?=0 B.X2与Y无任何关系 A.估计值?2C.回归模型不成立 D.X2与Y无线性关系
)
7.在对数线性模型LnYi????Xi?u中,?度量了(
A.X变动1%时,Y变动的百分比。 B.Y变动1%时,X变动的百分比。
14
C.X变动一个单位时,Y变动的数量。 D.Y变动一个单位时,X变动的数量。
8.在线性到对数模型,LnYt??1??2t?ut中,Yt代表国内生产总值,t代表时间变
)
B.平均增长量
D.经济增长率
)
量,则斜率系数β2代表( A.经济发展速度 C.总增长量
9.在对数到线性模型Yt??1??2LnXt?ut中,斜率系数β2的含义为(
A.X变动1%时,Y变动的数量。
B.X变动一个单位时,Y变动的数量。 C.X变动1%时,Y变动的百分比。
D.X变动一个单位时,Y变动的百分比。
10.在回归模型Yi??1??2X2i??3X3i?ui中,解释变量X3为无关解释变量,则因
?2( ) 为X3的引入,会使?2的最小二乘估计?
A.无偏、方差变大 C.有偏、方差变大
B.无偏、方差不变 D.有偏、方差不变
11.真实的回归模型为Yi??1??2X2i??3X3i?ui,但是在回归分析时使用的模型为
?2( ) Yi??1??2X2i?vi,漏掉了重要解释变量X3,则会使?2的最小二乘估计?
A.X3与X2相关时有偏 B.X3与X2相关时无偏 C.无偏 D.有偏
12.对于倒数模型Yt =β1+β2
1?ut,当β1>0, β2>0时,可用来描述( ) Xt A.增长曲线 B.菲利普斯曲线 C.恩格尔支出曲线 D.平均总成本曲线
13.根据判定系数R2与F统计量的关系可知,当R2=1时,有( ) A.F=1 B.F=-1 C.F=0 D.F=?
14.根据样本资料估计得到人均消费支出Y对人均收入X的回归模型为
)
??1.00?0.75LnX,这表明人均收入每增加1%,人均消费支出将增加( LnYii
A.2% B.0.2% C.0.75% D.7.5%
15.对回归系数进行显著性检验时的t统计量为(
A.
)
?j
?)Se(?j
B.
??j?)Var(?j 15
C.
?j?)Var(?j D.
??j?)Se(?j
二、多项选择题
1.多元回归模型Yi =β1+β2X2i+β3X3i+ui通过了整体显著性F检验,则可能的情况为( ) A.β2 = 0,β3 = 0 B.β2 ≠0,β3 ≠0 C.β2 = 0,β3 ≠0 D.β2 ≠0,β3 = 0 E.β2 =β3 ≠0 2.对回归模型进行显著性检验时所用的F统计量可表示为( )
A.
ESS/(n?k)
RSS/(k?1) B.
ESS/(k?1)
RSS/(n?k)
R2/(k?1)C. 2(1?R)/(n?k)R2/(n?k)E. 2(1?R)/(k?1)
(1?R2)/(n?k) D. 2R(k?1)
3.有关对变量取对数的经验法则下列说法正确的为( ) A.对于大于0的数量变量,通常均可取对数; B.以年度量的变量,如年龄等以其原有形式出现; C.比例或百分比数,可使用原形式也可使用对数形式; D.使用对数时,变量不能取负值; E.数值较大时取对数形式。 4.真实模型为Yi =β1+β2X2i+β3X3i+ui时,如果使用模型Yi =
?1??2X2i?ui中,则
遗漏了重要解释变量X3,此时对参数的最小二乘估计有较大影响,下列说法正确的为 ( )
?1与??2是有偏、非一致的; A.如果X3与X2相关,则??1与??2是有偏、非一致的; B.如果X3与X2不相关,则??2是无偏的; C.如果X3与X2不相关,则??2是有偏、一致的。 D.如果X3与X2相关,则??2是有偏、一致的。 E.如果X3与X2不相关,则?三、名词解释
1.多元线性回归模型 2.调整的判定系数 3.对数线性模型 四、简答题
16