(2)如果在2s内飞轮转速减少一半,需加多大的力F?
解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N、N?是正压力,Fr、Fr?是摩擦力,Fx和Fy是杆在A点转轴处所受支承力,R是轮的重力,P是轮在O轴处所受支承力.
题2-25图(a)
题2-25图(b)
杆处于静止状态,所以对A点的合力矩应为零,设闸瓦厚度不计,则有
F(l1?l2)?N?l1?0N??l1?l2F l1对飞轮,按转动定律有???FrR/I,式中负号表示?与角速度?方向相反. ∵ Fr??N N?N? ∴ Fr??N???又∵ I?∴ ???以F?100N等代入上式,得
l1?l2F l11mR2, 2FrR?2?(l1?l2)?F ① ImRl1???2?0.40?(0.50?0.75)40?100??rad?s?2
60?0.25?0.503由此可算出自施加制动闸开始到飞轮停止转动的时间为
t??这段时间内飞轮的角位移为
?0900?2??3??7.06s ?60?40???0t??t2?1900?2?91409?????(?)2 2604234?53.1?2?rad可知在这段时间里,飞轮转了53.1转.
(2)?0?900?2?rad?s?1,要求飞轮转速在t?2s内减少一半,可知 60?0??2??0t???02t??15?rad?s?2 2用上面式(1)所示的关系,可求出所需的制动力为
F???mRl1?2?(l1?l2)60?0.25?0.50?15?
2?0.40?(0.50?0.75)?2?177N2-26 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO?转动.设大小圆柱体的半径分别为R和r,质量分别为M和m.绕在两柱体上的细绳分别与物体m1和m2相连,m1和m2则挂在圆柱体的两侧,如题2-26图所示.设
R=0.20m, r=0.10m,m=4 kg,M=10 kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
解: 设a1,a2和β分别为m1,m2和柱体的加速度及角加速度,方向如图(如图b).
题2-26(a)图 题2-26(b)图
(1) m1,m2和柱体的运动方程如下:
T2?m2g?m2a2 ① m1g?T1?m1a1 ②
??T1R?T2r?I? ③
式中 T1??T1,T2??T2,a2?r?,a1?R? 而 I?由上式求得
11MR2?mr2 22???Rm1?rm2gI?m1R2?m2r20.2?2?0.1?2?9.8
11?10?0.202??4?0.102?2?0.202?2?0.10222?6.13rad?s?2 (2)由①式
T2?m2r??m2g?2?0.10?6.13?2?9.8?20.8N
由②式
T1?m1g?m1R??2?9.8?2?0.2.?6.13?17.1N
2-27 计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M,半径为r,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设m1=50kg,m2=200 kg,M=15 kg, r=0.1 m 解: 分别以m1,m2滑轮为研究对象,受力图如图(b)所示.对m1,m2运用牛顿定律,有
m2g?T2?m2a ①
T1?m1a ②
对滑轮运用转动定律,有
1T2r?T1r?(Mr2)? ③
2又, a?r? ④ 联立以上4个方程,得
a?m2gm1?m2?M2?200?9.8?7.6155?200?2m?s?2
题2-27(a)图 题2-27(b)图
题2-28图
2-28 如题2-28图所示,一匀质细杆质量为m,长为l,可绕过一端O的水平轴自由转动,杆于水平位置由静止开始摆下.求:
(1)初始时刻的角加速度; (2)杆转过?角时的角速度. 解: (1)由转动定律,有
mg∴ ??(2)由机械能守恒定律,有
11?(ml2)? 233g 2lmgl11sin??(ml2)?2 223∴ ??3gsin? l
题2-29图
2-29 如题2-29图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上.现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度?? 30°处.
(1)设这碰撞为弹性碰撞,试计算小球初速v0的值; (2)相撞时小球受到多大的冲量?
解: (1)设小球的初速度为v0,棒经小球碰撞后得到的初角速度为?,而小球的速度变为v,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:
mv0l?I??mvl ①
121212mv0?I??mv ② 222上两式中I?12oMl,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度??30,312lI??Mg(1?cos30?) ③ 22按机械能守恒定律可列式:
由③式得
???(1?cos30?)???(1?)?
2??I??l由①式
?Mgl?12?3g3?12v?v0?由②式
I? ④ ml