º¯ÊýµÄÖÜÆÚÐÔÓë¶Ô³ÆÐÔ ÏÂÔر¾ÎÄ

£¨3£©Çóy?f(x)ÔÚ[4,9]ÉϵĽâÎöʽ.

½â£º¡ßf(x)ÊÇÒÔ5ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬ÇÒÔÚ[?1,1]ÉÏÊÇÆ溯Êý£¬¡àf(1)??f(?1)??f(5?1)??f(4)£¬¡àf(1)?f(4)?0. ¢Úµ±x?[1,4]ʱ£¬ÓÉÌâÒâ¿ÉÉèf(x)?a(x?2)2?5 (a?0)£¬ ÓÉf(1)?f(4)?0µÃa(1?2)2?5?a(4?2)2?5?0£¬¡àa?2£¬ ¡àf(x)?2(x?2)2?5(1?x?4).

¢Û¡ßy?f(x)(?1?x?1)ÊÇÆ溯Êý£¬¡àf(0)?0£¬

ÓÖÖªy?f(x)ÔÚ[0,1]ÉÏÊÇÒ»´Îº¯Êý£¬¡à¿ÉÉèf(x)?kx(0?x?1) ¶øf(1)?2(1?2)2?5??3£¬

¡àk??3£¬¡àµ±0?x?1ʱ£¬f(x)??3x£¬

´Ó¶ø?1?x?0ʱ£¬f(x)??f(?x)??3x£¬¹Ê?1?x?1ʱ£¬f(x)??3x. ¡àµ±4?x?6ʱ£¬ÓÐ?1?x?5?1£¬¡àf(x)?f(x?5)??3(x?5)??3x?15. µ±6?x?9ʱ£¬1?x?5?4£¬

¡àf(x)?f(x?5)?2[(x?5)?2]?5?2(x?7)?5 ¡àf(x)??22??3x?15,24?x?66?x?9?2(x?7)?5,.

10.ÒÑÖªf(x)?x(11?)£¬£¨1£©ÅжÏf(x)µÄÆæżÐÔ£»£¨2£©Ö¤Ã÷£ºf(x)?0 x2?12£¬1]Éϵĺ¯Êýy?f(x)ÊǼõº¯Êý£¬ÇÒÊÇÆ溯Êý£¬Èô11¡¢¶¨ÒåÔÚ[?1f(a2?a?1)?f(4a?5)?0£¬ÇóʵÊýaµÄ·¶Î§¡£

?2x?b12£®£¨ÖØÇìÎÄ£©ÒÑÖª¶¨ÒåÓòΪRµÄº¯Êýf(x)?x?1ÊÇÆ溯Êý¡£

2?a£¨¢ñ£©Çóa,bµÄÖµ£»£¨¢ò£©Èô¶ÔÈÎÒâµÄt?R£¬²»µÈʽf(t?2t)?f(2t?k)?0ºã³ÉÁ¢£¬ÇókµÄÈ¡Öµ·¶Î§¡£

22 9

10(1)żº¯Êý (2)Æ溯Êý 11(1)żº¯Êý 12¡¢?1,¸´Ï°Ì⣺

2£®ÒÑÖªÊýÁÐ{an}£¬ÆäÇ°nÏîºÍΪSn£¬µã(n,Sn)ÔÚÅ×ÎïÏßy?µÈ±ÈÊýÁÐ{bn}Âú×ãb1b3???3?33? ??2??321x?xÉÏ£»¸÷ÏΪÕýÊýµÄ 2211,b5?. 1632£¨¢ñ£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»£¨¢ò£©¼ÇCn?anbn,ÇóÊýÁÐ{Cn}µÄÇ°nÏîºÍTn£®

b2?c2?a28?S?ABC£¨Æä2£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒ

23ÖÐS?ABCΪ¡÷ABCµÄÃæ»ý£©£®

2B?C?cos2A£»£¨¢ñ£©Çósin£¨¢ò£©Èôb?2£¬¡÷ABCµÄÃæ»ýΪ3£¬Çóa£®

23£®Ä³ÈÕÓÃÆ·°´ÐÐÒµÖÊÁ¿±ê×¼·Ö³ÉÎå¸öµÈ¼¶£¬µÈ¼¶ÏµÊýXÒÀ´ÎΪ1,2,3,4,5£®ÏÖ´ÓÒ»Åú¸ÃÈÕ

ÓÃÆ·ÖÐËæ»ú³éÈ¡20¼þ£¬¶ÔÆäµÈ¼¶ÏµÊý½øÐÐͳ¼Æ·ÖÎö£¬µÃµ½ÆµÂÊ·Ö²¼±íÈçÏ£º

X ƵÂÊ 1 2 0£®2 3 0£®45 4 5 a b c £¨1£©ÈôËù³éÈ¡µÄ20¼þÈÕÓÃÆ·ÖУ¬µÈ¼¶ÏµÊýΪ4µÄÇ¡ÓÐ3¼þ£¬µÈ¼¶ÏµÊýΪ5µÄÇ¡ÓÐ2¼þ£¬Çóa£¬b£¬cµÄÖµ£»

£¨¢ò£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬½«µÈ¼¶ÏµÊýΪ4µÄ3¼þÈÕÓÃÆ·¼ÇΪx1£¬x2£¬x3£¬µÈ¼¶ÏµÊýΪ5

µÄ2¼þÈÕÓÃÆ·¼ÇΪy1£¬y2£¬ÏÖ´Óx1£¬x2£¬x3£¬y1£¬y2Õâ5¼þÈÕÓÃÆ·ÖÐÈÎÈ¡Á½¼þ£¨¼Ù¶¨Ã¿¼þÈÕÓÃÆ·±»È¡³öµÄ¿ÉÄÜÐÔÏàͬ£©£¬Ð´³öËùÓпÉÄܵĽá¹û£¬²¢ÇóÕâÁ½¼þÈÕÓÃÆ·µÄµÈ¼¶ÏµÊýÇ¡ºÃÏàµÈµÄ¸ÅÂÊ£®

4. Èçͼ£¬ÔÚÈýÀâ׶P?ABCÖУ¬PA?µ×ÃæABC£¬AC?BC£¬HΪPCµÄÖе㣬 PA?AC?2£¬BC?1. £¨¢ñ£©ÇóÖ¤£ºAH?ƽÃæPBC£»

£¨¢ò£©Çó¾­¹ýµãPABCµÄÇòµÄ±íÃæ»ý¡£

5.ÒÑÖªÅ×ÎïÏßx2?8(y?8)ÓëyÖá½»µãΪM£¬¶¯µãP,QÔÚÅ×ÎïÏß

P H

?????????B ÉÏ»¬¶¯£¬ÇÒMP?MQ?0

£¨1£©ÇóPQÖеãRµÄ¹ì¼£·½³ÌW£»

£¨2£©µãA,B,C,DÔÚWÉÏ£¬A,D¹ØÓÚyÖá¶Ô³Æ£¬¹ýµãD×÷ÇÐÏßl£¬ÇÒBCÓëlƽÐУ¬µãDµ½

AB,ACµÄ¾àÀëΪd1,d2£¬ÇÒd1?d2?2|AD|£¬Ö¤Ã÷£º?ABCΪֱ½ÇÈý½ÇÐÎ

A

C

lnx.£¨1£©Çóf(x)µÄ¼«´óÖµ£» x2£¨2£©ÇóÖ¤£º12eln[n?(n?1)?(n?2)?2?1]?(n2?n)(2n?1)(n?N*)

6. É躯Êýf(x)?aax2?2tx?t??0(a?R)ÓÐΨһ½âʱ£¬£¨3£©µ±·½³Ìf(x)?·½³Ìg(x)?txf?(x)??0Ò²ÓÐ2ex2Ψһ½â£¬ÇóÕýʵÊýtµÄÖµ£»

10

¸´Ï°Ìâ´ð°¸£º1¡¢½â£º£¨¢ñ£©QSn??ÊýÁÐ?an?ÊÇÊ×ÏîΪ2£¬¹«²îΪ3µÄµÈ²îÊýÁУ¬?an?3n?1

11ÓÖ?¸÷ÏΪÕýÊýµÄµÈ±ÈÊýÁÐ?bn?Âú×ãb1b3?,b5?

43211?b2?b1q?,b1q4?432 £¬½âµÃb1?1,q?1£¬?bn?(1)n

2221n (¢ò)ÓÉÌâµÃcn?(3n?1)()

21111?Tn?2??5?()2?...?(3n?4)?()n?1?(3n?1)?()n2222 ¢Ù

11111?Tn?2?()2?5?()3?...?(3n?4)?()n?(3n?1)?()n?122222 ¢Ú

¢Ù-¢ÚµÃ

321n?n£¬µ±n?1ʱ£¬a1?S1?2 223135µ±n?2ʱ£¬Sn?1?(n?1)2?(n?1)?n2?n?12222

?an?Sn?Sn?1?3n?1

111?1?1Tn?1?3?()2?()3?L?()n??(3n?1)()n?1 222?2?211[1?()n?1]12?1?3?4?(3n?1)?()n?1121?2?3n?5 ??????????????????12·Ö n22bccosA81??bcsinA¼´3cosA?4sinA?0 2¡¢½âÎö£º£¨¢ñ£©ÓÉÒÑÖªµÃ

23234?sinA?cosA?55B?C1?cosAcosA1sin2?cos2A??cos2A?2cos2A??

2222164159??? ?2???????6·Ö 252?525013A?3,b?2, £¨¢ò£©ÓÉ£¨¢ñ£©ÖªsinA? S?ABC?bcsin52?c?5ÓÖ?a2?62?c2?2bcosA

4?a2?4?25?2?2?5??13

5?a?13??????????????12·Ö

?Tn?5?ÒòΪ³éÈ¡µÄ20¼þÈÕÓÃÆ·ÖУ¬µÈ¼¶ÏµÊýΪ4µÄÇ¡ÓÐ3¼þ£¬ËùÒÔb=

511?3?()n?(3n?1)?()n?1222

3¡¢.½â£º£¨1£©ÓÉƵÂÊ·Ö²¼±íµÃa+0.2+0.45+b+c=1, a+b+c=0.35 ?????1·Ö

3=0.15???3·Ö 20 11

µÈ¼¶ÏµÊýΪ5µÄÇ¡ÓÐ2¼þ£¬ËùÒÔc=

2=0.1 ?????4·Ö 20´Ó¶øa=0.35-b-c=0.1

ËùÒÔa=0.1 b=0.15 c=0.1 ?????6·Ö £¨2£©´ÓÈÕÓÃÆ·X1,X2,X3,Y1,Y2ÖÐÈÎÈ¡Á½¼þ£¬ËùÓпÉÄܽá¹û

X1,X2),(X1,X3),(X1,Y1),(X1,Y2),£¨X2,X3£©,( X2,Y1),(X2,Y2),(X3,Y1), (X3,Y2),(Y1,Y2)¹²10ÖÖ£¬ ?9·Ö

ÉèʼþA±íʾ¡°´ÓÈÕÓÃÆ·X1,X2,X3,Y1,Y2ÖÐÈÎÈ¡Á½¼þ£¬ÆäµÈ¼¶ÏµÊýÏàµÈ¡±£¬ÔòA°üº¬µÄ»ù±¾Ê¼þΪ(X1,X2),(X1,X3),(X1,X2),(Y1,Y2)¹²4¸ö£¬???11·Ö

4¹ÊËùÇóµÄ¸ÅÂÊP(A)= =0.4 ?????12·Ö

104¡¢£¨¢ñ£©Ö¤Ã÷£ºÒòΪ PA?µ×ÃæABC£¬BC?µ×ÃæABC£¬

ËùÒÔ PA?BC£¬

ÓÖÒòΪ AC?BC£¬ PA?AC?A£¬ ËùÒÔ BC?ƽÃæPAC£¬

ÓÖÒòΪ AH?ƽÃæPAC£¬ ËùÒÔ BC?AH. ÒòΪ PA?AC£¬HÊÇPCÖе㣬 ËùÒÔ AH?PC£¬ ÓÖÒòΪ PC?BC?C£¬

ËùÒÔ AH?ƽÃæPBC. ??????????6·Ö

(

£¨¢ò£©S?9?????????12·Ö 5¡¢½â£º£¨1£©ÏÔȻֱÏßMPµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèΪk£¬ÉèPQµÄÖеãR(x,y)

?Ö±ÏßMP:y?kx?8Óëx2?8(y?8)ÁªÁ¢½âµÃ£ºP(8k,8k2?8)

8844ͬÀí£ºQ(?,2?8) ?PQµÄÖеãR(4k?,4k2?2?8)

kkkk4?x?4k???k??, ?¹ì¼£·½³Ì£ºx2?4y??????????6·Ö ?y?4k2?4?8?k2?x02x02x12x22x2x),C(x1,),B(x2,)ÔòA(?x0,) £¨2£©ÓÉy?µÃ£ºy??£¬ÉèD(x0,44444211?kBC?(x1?x2)?x0, ?x1?x2?2x0

4211?B(2x0?x1,(2x0?x1)2) ?kAC?(x1?x0)

441ÓÖkAB?(x0?x1) ÔòkAC??kAB Ôò?DAC??DAB ?d1?d2

4ÓÖd1?d2?2|AD| Ôò?DAC??DAB?450 ??ABCΪֱ½ÇÈý½ÇÐÎ????????13·Ö

x?2xlnx1?2lnx6¡¢½â£º£¨1£©f?(x)??.ÓÉf?(x)?0µÃx?e, 43xxx e (0,e) (e,??) ? ? 0 f?(x) f(x) µÝÔö ¼«´óÖµ µÝ¼õ

12

´Ó¶øf(x)ÔÚ(0,e)µ¥µ÷µÝÔö,ÔÚ(e,??)µ¥µ÷µÝ¼õ.

1.????????????????????4·Ö 2e11lnx1£¨2£©Ö¤Ã÷£º?f(x)¼«´ó?f(e)?. ?f(x)? ?2?

2e2ex2e12 ?lnx?x2 ?2elnx?x2e212£¬12eln?222·Ö±ðÁîx?1,2,3,?,n ?2eln?£¬? 2elnn?n

?2e(ln1?ln2?ln3???lnn)?12?22?32???n2

n(n?1)(2n?1) ?2eln[n?(n?1)?(n?2)?2?1]?62 ?12eln[n?(n?1)?(n?2)?2?1]?(n?n)(2n?1)(n?N*)??????????9·Ö

a?0(a?R?)ÓÐΨһ½â ?a?1 £¨3£©ÓÉ£¨1£©µÄ½áÂÛ£º·½³Ìf(x)?2eax2?2tx?t2·½³Ìg(x)?txf?(x)?ÓÐΨһ½â ¼´£º?0x?2tlnx?2tx?0(x?0)ÓÐΨһ½â 2x22ÉèG(x)?x2?2tlnx?2tx?0(x?0) ?G?(x)?(x?tx?t)

x22ÓÉ?G?(x)?0Ôòx?tx?t?0 Éèx?tx?t?0µÄÁ½¸ùΪx1,x2£¬²»·ÁÉèx1?x2 f(x)¼«´ó?f(e)?t?t2?4tt?t2?4t?t?0 ?x1?0?x2 ?x1? ,x2?22?G(x)ÔÚ(0,x2)µÝ¼õ£¬(x2,??)µÝÔö

ҪʹG(x)?x2?2tlnx?2tx?0(x?0)ÓÐΨһ½â£¬ÔòG(x2)?0 ¼´£ºx22?2tlnx2?2tx2?0 ¢Ù

ÓÖx22?tx2?t?0¢Ú Óɢ٢ڵãº2tlnx2?tx2?t?0 ¼´£º2lnx2?x2?1?0

?x2?1 £¬ÓÖx2ÊÇ·½³Ìx2?tx?t?0µÄ¸ù

1t?t2?4t ?t???????????????????14·Ö ?1?x2?22

13