2020-2021备战中考数学培优专题复习锐角三角函数练习题附答案 下载本文

(2)连接OP,则OA=OB=OP=

15AB?, 22??BP?, ∵AP∴OP⊥AB,∠OPG=∠PDC, ∵AB是⊙O的直径, ∴∠ACB=90°, ∵AC=2BC,

∴tan∠CAB=tan∠DCB=

BC, ACCEBE1??, AECE2∴AE=4BE,

∵AE+BE=AB=5,

∴AE=4,BE=1,CE=2, ∴OE=OB﹣BE=2.5﹣1=1.5, ∵∠OPG=∠PDC,∠OGP=∠DGE,

OGOP?, GEEDOE?GEOP2.5??∴, GECE225∴GE=,OG=,

36522∴PG=OP?OG?,

6∴△OPG∽△EDG,∴GD=DE?GE?∴PD=PG+GD=222, 3310. 2

【点睛】

本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.

11.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.

(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;

(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.

【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)BE?23. 【解析】 【分析】

(1)①补全图形即可,

②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=32,由直角三角形的性质得出FG=DG=2GH=26,得出DF=2DG=43,在Rt△DCF中,由勾股定理得出CF=23,即可得出结果. 【详解】

解:(1)①补全图形如图1所示, ②FG=DG,FG⊥DG,理由如下, 连接BG,如图2所示, ∵四边形ABCD是正方形, ∴∠ACB=45°, ∵EG⊥AC, ∴∠EGC=90°,

∴△CEG是等腰直角三角形,EG=GC, ∴∠GEC=∠GCE=45°, ∴∠BEG=∠GCF=135°, 由平移的性质得:BE=CF,

?BE?CF?在△BEG和△GCF中,??BEG??GCF,

?EG?CG?∴△BEG≌△GCF(SAS), ∴BG=GF,

∵G在正方形ABCD对角线上, ∴BG=DG, ∴FG=DG,

∵∠CGF=∠BGE,∠BGE+∠AGB=90°, ∴∠CGF+∠AGB=90°, ∴∠AGD+∠CGF=90°, ∴∠DGF=90°, ∴FG⊥DG.

(2)过点D作DH⊥AC,交AC于点H.如图3所示, 在Rt△ADG中, ∵∠DAC=45°, ∴DH=AH=32,

在Rt△DHG中,∵∠AGD=60°, ∴GH=DH3=323=6,

∴DG=2GH=26, ∴DF=2DG=43, 在Rt△DCF中,CF=∴BE=CF=23.

?43?2?62=23,

【点睛】

本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.

12.如图,公路AB为东西走向,在点A北偏东36.5?方向上,距离5千米处是村庄M,在点A北偏东53.5?方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出

P的位置(不写作法)并计算:

(1)M,N两村庄之间的距离;

(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)

【答案】(1) M,N两村庄之间的距离为29千米;(2) 村庄M、N到P站的最短距离和是55千米. 【解析】 【分析】

(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.

(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长. 【详解】

解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.

(1)在Rt△ANE中,AN=10,∠NAB=36.5° ∴NE=AN?sin∠NAB=10?sin36.5°=6, AE=AN?cos∠NAB=10?cos36.5°=8, 过M作MC⊥AB于点C,

在Rt△MAC中,AM=5,∠MAB=53.5° ∴AC=MA?sin∠AMB=MA?sin36.5°=3,