老树发新芽 EL34和KT88推挽胆机(一)
2011年12月,我开始实施筹划很久的将300B推挽胆机改用KT88和 EL34的计划。原来的机器底盘、一对输出变压器、1只扼流圈、8个高压大容量电解都不变,其余从电源到元器件和接线都有修改。每个双休日从杭州回到绍兴家中就一头扎进工作间,有时连续忙乎到第二天凌晨3点才去睡觉。2012年12月,机器开始发声调试,到2015年9月第4次修改完成,历经4年时间,终于磨好一剑。
KT88和 EL34推挽机改好后,信噪比很高,达到95db,音量电位器开到最大,耳朵紧贴音箱也听不到一点哼声和噪音,背景非常干净。实际听感也很好,高频细节很多且柔顺,中频醇厚饱满,人声尤其好,低频力度很足且富有弹性,高低频两端延伸很宽,整体音场很开阔,声音很开扬,比原来300B失真小。下图是EL34推挽正在工作。
改制推挽机时的主要工程量是:
(1) 局部修改线路:由于没有采用直热管,旁热管阴极中毒问题没有直热管那么突
出,所以取消高压延时电路。前级音调的衰减和提升从±15db改为±6db,电位器改为B型(直线型)。倒相级的恒流源改回最初的五极电子管,采用EF89。设置功率管三极管接法和超线性接法转换开关,用于切换工作状态。电源滤波改为CLC,每声道的后级高压增加第一级C滤波,采用法国苏伦4.7uf MKP电容和德国ROE 1uf MKT电容并联成28uf,第二级10H电感滤波保持不变。每声道的前级高压增加第一级C滤波,采用德国西门子与松下合作的S+M电容660uf/400V(made in germany)两个串联,并且增加第二级5H电感滤波。
(2) 局部修改用料:100K音量电位器改为100K 24档步进电位器,以求改善左右声
道平衡度。前级SRPP电路放大管改用12AU7(ECC82)代替原来的6N11
1
(ECC88),以达到在不改变前级稳压电路前提下使前级放大管的工作点处于A类的目的。由于12AT7有更高跨导(5.5 mA/V)和放大系数(60)及较适合的阳极电流(10mA),作阴极跟随器时将有更小输出电阻和更大的电流驱动能力,所以仿照麦景图MC-275,阴随推动级的电子管改用与12AZ7等效的12AT7代替原来的5814A(ECC82)。
(3) 重新设计制作电源变压器。原因有四:1、原来并不想重绕变压器,但做负荷实
验时一个整流桥击穿而导致变压器被烧;2、原来只有一个负偏压绕组,两声道公用,在没有条件做去耦测试的情况下,将影响声道分离度;3、灯丝改全交流供电,需增加灯丝绕组中心抽头;4、为改为用旁热式电子管整流做好准备——高压绕组抽头要精确,两组电压要一致,以便由两组桥式硅整流合并为一组全波电子管整流,并且预留整流管的5V灯丝绕组。
(4) 增加元件或修改部分元件参数
(a)增加元件:主要是增加五极管的栅极抑制电阻。五极管的的跨导比较高,有可能产生射频振荡。根据Morgan Jones所著的《电子管放大器》的论述,EL34和KT88的栅极抑制电阻采用1.2K。
(b)修改部分元件参数:主要是输入级的阴极交流旁路电容容量原先采用1000uf,可能并不合适,需要经过计算重新选择。
(一)设计制作电源变压器和整流元件选择 一、次级电流功率计算
1、后级高压电流:KT88最大电流——固定偏压-59V,超线性,Va453V,2×140mA=280mA 实际:Va400V,三极管接法,固定偏压-40V,2×100mA=200mA 后级高压功率:电感负载桥式最大1.1×370×0.28×2=228W,实际1.1×370×0.2
×2=162.8W,
2、前级高压电流:工作点电流2×12AU7_2×3.5mA,6E2_2×1mA,6SN7_2×5mA,稳压
管电流2×6mA,EF89的帘栅极电流_2×3mA,12AT7_2×7.5mA,合计52mA ,最大不会超过64mA。
功率(电容负载桥式)最大1.56×340×0.064×2=67.89W=68W
3、后级灯丝电流:1.6A×2=3.2A,功率6.3×3.2×2=40.32W
4、前级灯丝电流:6.3V——6E2_0.3A,6SN7_0.6A, EF89_0.2A,合计1.1×2=2.2A ,
功率6.3×2.2=13.9W。
12.6V——12AU7_0.15A ,12AT7 _0.15A,合计0.15×6=0.9A,功率12.6×0.9=11.3W
加上预留负栅压电子管整流EZ81的灯丝供电1.2A,共计32.44W。
5、预留电子管整流灯丝电流:后级用5Z8P,5.75A;前级用5Z4P,2.2A,39.85W 。总
计77.41W。
6、负偏压电流:主要是12AT7的阴极电流15mA。改用12BH7时,阴极电流18mA。
功率(电容负载桥式)1.56×141×0.018×2=7.9W
合计:最大——228+68+40.3+77.41+7.9=421.6W 实际约250W
初级功率最大397.3/0.9=441W,电流2.0A。实际250/0.9=278W,电流1.27A 二、变压器制作
英国缺口铁芯,B=10000GS,133×110×70mm,舌宽44mm,截面30.8㎝2,N=1.5N/V, 窗口:66mm×22㎜,除去骨架占用的,实际61.7㎜×19.15㎜
2
(1) 灯丝:为了使6.3V绕组的中心抽头准确,圈数改为10N,在第5匝处抽头,改匝比
为N=1.5873N/V。电流3.2A,线径D=0.7×√3.2=1.25㎜,外径1.33㎜。2组6.3V——KT88×4灯丝,20N;2组6.3V——前级左右声道灯丝和EZ81×1(负栅压整流)灯丝,20N;1组12.6V——前级部分管子灯丝,20N;在第10匝处抽头;4组5V——为改电子管整流预留:5z8p×1+5z4p×1,4×8N=32N,合计92匝,1层46匝,2层正好可以绕下,厚度:2×1.33+0.05=2.71㎜,29米S=1.23㎜2,M=0.32㎏
(2) 前级高压1、2:340V×2,540N×2,电流0.127A(晶体管整流时实际0.06A,改电
子管整流时两绕组合并,0.12A),线径D=0.7×√0.127=0.25㎜,外径0.275㎜,一层224N,2.41层(2.5)×2=5,厚度5×0.275+3×0.05=1.525㎜,342米,S=0.049㎜2,M=0.15㎏
(3) 后级高压1、2:370V×2 50V+20V+300V,300V+20V+50V,[头]80N→31N→
476N[尾],[头]476N→31N→80N[尾], 587N×2,电流0.4A(晶体管整流时实际0.2A,改电子管整流时两绕组合并,0.4A)线径D=0.7×√0.4=0.44㎜,外径0.49㎜,一层126N,4.66层×2=9.32,10层,厚度10×0.49+8×0.05=5.3㎜,391米
S=0.15㎜2,M=0.53㎏
(4) 负偏压1、2:140V×2,222N×2,0.08A,线径D=0.7×√0.08=0.19㎜,0.19㎜线
外径0.21㎜,一层293N,1.5层(2),接着后级高压绕组绕,绕满后回头再绕,算1层厚度:0.21+0.05=0.26㎜,128米(实际值,用已有线)
(5) 初级:220V+10V=230V,349N+16N=365N,电流2A,线径D=0.7×√2=0.989㎜,外径
1.07㎜,一层57N,6.4层(7),厚度7×1.07+4×0.05=7.69㎜,137米, S=0.785㎜2,M=0.96㎏
(6) 屏蔽层0.1+1.15+0.15=0.4㎜ (7) 绕组间绝缘:4×0.05=0.2㎜
(8) 线包总厚度:2.71+1.252+5.3+0.26+7.69+0.4+0.2=17. 812mm,窗口还剩余
22-17.812=4.188mm,可以绕下。 导线重量计算公式:M=(1/4000)×ρπd2L
ρ:比重,铜:8.89g/cm3;铝:2.7g/cm3。 π:圆周率 d:线芯直径。单位:㎜
3
L:长度,单位:米。重量M=8.89×S×L 三、整流元件选择
整流元件必须留出足够的电压电流余量,否则一旦击穿,直接后果就是烧毁电源变压器,而此时保险丝往往是没有熔断的。由于次级高压绕组整流滤波输出电压达到450V,所以整流二极管的反向电压必须大于其2倍,选用1000V/35A整流桥。
感到纠结的是要求高可靠性的负偏压整流元件的选择。手头有快恢复二极管FR-107(1000V,1A),负偏压电路的最大负载电流主要来自阴极跟随器,最大电流20mA,能不能用?根据Morgan Jones的著作《电子管放大器》,C滤波电路中整流二极管给滤波电容充电的脉动电流是:ip=2∏fcVpSin(2∏ft)
其中:f=50HZ, ∏=3.14,c:滤波电容容量(本案2200uf),Vp:次级电压峰值(本案:140V×1.414=198V), Sin(2∏ft)中的t是充电脉冲时间1ms,括号内的值是弧度,代入上式: ip=2×3.14×50×0.0022×198×Sin(2×3.14×50×0.001)=136.78×Sin(0.314)=136.78×0.31=42A
查手册FR-107正向峰值浪涌电流Ifsm=30A,小于充电回路浪涌电流计算值,采用有风险,于是在已有的元件中选用600V~800V,10A的整流桥,正向峰值浪涌电流Ifsm=200A。整流桥都采用日本原装进口的(东芝10J4B41和新电元S10VB60)。
下图是KT88推挽正在工作:
改好的电路图如下。
4
5
6
图中括号外是供电220V时实测电压值,括号内是供电225V时实测电压值。变压器绕组直流电阻在热态时增大,测出的电压也比冷态时低3V,图中数值是工作6小时后的值。
(二)各级电子管工作点的选择
正确选择电子管的工作点是非常重要的。对于A类放大,正确的工作点应该是选在Vg—Ia特性曲线直线段的中点,这时失真最小,声音听感也最好。有的电路将工作点选在Vg—Ia特性曲线弯曲段,靠近屏流的截止区,电子管工作在小电流状态,实际上是处于AB类放大状态,信号振幅大时,就会出现截止失真,设备已经不是工作于高保真状态了。电子管手册给出的特性曲线是正确选择电子管的工作点的依据,一般用作图法来选择。
(1)前级工作点的选择
为什么要用12AU7(ECC82)代替原来的6N11(ECC88)?
一是因为Morgan Jones在《电子管放大器》一书中曾推荐用ECC82做前置线路放大,认为它的输入电容最小,而其他低失真的*SN7和*N7的管子Cin都大于50pf,将使f-3db=106KHZ(理想值为131KHZ),导致20KHZ处频响下跌0.15db。
二是因为用示波器观察第二级SRPP电路输出到倒相级栅极方波响应波形有失真,且主要是在信号的下半周的截止失真。
原因是:原来电路6N11(ECC88)的阴极电阻是1K,负偏电压是3.5V,阳极电压是约100V,从Vg—Ia特性曲线查出,这样的工作点位于曲线弯曲段的下方,已经很接近阳极电流的截止点,信号振幅大时,就产生了截止失真。要使6N11(ECC88)工作于A类,就要把工作点选在Vg—Ia特性曲线直线段的中点。作图得出:当Va=100V,Vg=-2.1V时,Ia=10mA,Rk=220欧,这就是6N11(ECC88)工作于A类的工作点。见下图:
7
如果将6N11(ECC88)的工作点改为A类,将使每声道前级增加13mA的电流,电源变压器负荷能力没有问题,但原来的前级稳压电路中的限流电阻必须更换为8.2K。这个限流电阻要通过至少28mA电流,降掉230V电压,功率约7W,发热量很大,必须在机外安装,但原先在机外直立安装的电阻是1993年从炼钢厂废钢里的国外军用旧电子设备上拆下的,现在买不到这种安装方式的电阻了,更别说特定阻值8.2K的了。
手头有1993年从炼钢厂废钢里的美国和英国军用旧电子设备上拆下的12AU7(ECC82),就查了它的Vg—Ia特性曲线,作图得出:当Va=100V,Vg=-3.5V时,Ia=3.5mA,Rk=1000欧,此点正位于Vg—Ia特性曲线直线段的中点,这就是说原来的元件不要做任何改变,只要把灯丝电压改为12.6V,改用12AU7(ECC82),就可以使前级工作于A类。见下图:
8
12AU7是否适应SRPP电路对放大管特殊要求:阳极工作电压低、阴极与灯丝间的耐压高?查电子管特性手册知:12AU7可以在100V~250V范围内很好工作,在屏压100V、屏流3.5mA时,放大因素仍然保持标准值u=17,跨导是S=1.6mA/V,比标准值(2.2mA/V)小28%。阴极与灯丝间的耐压是180V,比6N11(ECC88)的150V高不少。所以12AU7具有6N11(ECC88)那样的阳极工作电压低、阴极与灯丝间的耐压高的特性,见下图:
9
12AU7阴极电阻两边并联的交流旁路电容不仅影响增益,而且其容量大小对低端频响有很大影响。原线路电子管是6N11时选用1000uf,我进行了校验,看在12AU7工作点条件下,其容量是否合适。
根据Morgan Jones的著作《电子管放大器》,电子管本身的阴极等效电阻为: rk=(RL+ra)/(u+1)
Morgan Jones在《电子管放大器》一书中指出:“SRPP电路中,上臂管子的阴极电阻Rk是下臂管子的RL,由于其阻值相当低,这意味着必定有Av<u。”
据此,下臂管子的RL=Rk=1K。
电子管的ra和u的值将随阳极静态工作电流大小而变化。在电子管特性曲线图上作图,Ia=3.5mA下,ra=10k,u=17,代入上式:
rk=(10+1)/(17+1)=0.611K
阴极等效阴极交流电阻rk与阴极偏置电阻Rk是并联关系,阴极总电阻: rk′=rk‖Rk=(611×1000)/(611+1000)=379.3欧姆 Morgan Jones的著作《电子管放大器》指出:“ 放大器要有良好的低频响应,不止靠正确的幅度响应,还需要相位和瞬态响应所受的影响最小,而相位和瞬态响应涉及的低频端比截止频率低10倍,所以通常将截止频率f-3db选取为1HZ。” 所以我设定f-3db=1HZ,于是,与RK并联的交流旁路电容的容量为:
Ck=1/2∏f-3db rk′=1/2×3.14×1×379.3=420uf
最接近420uf的电容量标准值是470uf。我选用了470uf/16V瑞典长寿命电容,型号:PEG124。当然,仍采用1000uf的阴极旁路电容也是可以的,只是它对应于截止频率f-3db=0.5HZ,本机低频响应已经很好(见后面的方波响应),没必要采用这么大的电容。
(2)倒相级和推动级的工作点的选择
倒相级的6SN7和推动级的12AT7也必须工作于A类。我根据电路中实测的电压和计算的电流,验证它们都工作于Vg—Ia特性曲线直线段。6SN7的工作点:Va=180V,
10
Vg=-6.5V,Ia=4.3mA,工作点在直线段中点偏下。
在此工作点下,从6SN7/12SN7特性图上求得:μ=19.5,Ra=10000Ω=10KΩ,长尾式倒相级两臂的总增益:A=(μ×RL)/(RL + Ra)
=(19.5×33)/(33+10) =14.965≈15。
单臂增益是其一半,约为7.5左右,当前级输出电压峰值Vpin=6V时,倒相级单臂输出电压峰值Vpout=Vpin×A/2=6×7.5=45V,Vrms=31.8V
12AT7的工作点:Va=190V,Vg=-1.6V~-1.8V,Ia=7mA,正好在直线段中点。
11
由于倒相级6SN7工作在放大状态,所以需要检验其工作点的最大不失真输出振幅是否合适,能否不失真地驱动EL34和KT88。
首先,做出倒相管的负载线。长尾倒相电路与共阴极放大电路一样,负载线上Ia=0的电压端点是高压电源经负载电阻至阴极的电压,即:VHT=440V-114V=326V,其中114V是倒相管的阴极电位;负载线上Va=0的电流端点VHT/RL=326V/33K=9.8mA。在6SN7特性曲线图上连接这两个端点做出负载线,正好准确通过工作点:Va=180V,Ia=4.3mA Vg=-6.5V,由此可见;负载线的作图准确无误。
其次,找出限制点的电压振幅。沿负载线向左,找到即将产生栅流的饱和点Vg=-1V所对应的电压是90V;向右在相同幅度内没有限制点;于是最大不失真振幅峰值是:工作点电
12
压与饱和点电压的差值的:VP=(180V-90V)=90V,这是双臂输出总峰值,单臂是其1/2,即45V,此值可驱动EL34、KT88甚至2A3。
倒相级6SN7的阴极恒流源工作点的设置同样重要。采用EF89做恒流管是因为1993年从从炼钢厂废钢里的英国和丹麦军用旧通信设备上拆下了十多只EF89,多数测试良好;查手册可得到:EF89的内阻高达900K,放大系数u=3280,Va>75V以后屏流曲线比较平坦(屏压Va变动时屏流Ia变化很小),屏流加帘栅极电流超过10mA。这些特性决定了EF89在低屏压110V时有良好的恒流特性。
EF89的工作点由6SN7阴极电位(也就是EF89的阳极电压)、EF89的帘栅极电压、阳极电流加帘栅极电流流过阴极电阻产生负偏压决定。6SN7阴极电位就是前级SRPP输出电位加偏压,这个电路里是112V~115V。EF89的帘栅极电压从手册查出是100V,最好稳定,所以采用了帘栅极100V稳压电路。选择工作点主要是调整EF89的阴极电阻,(本机调至约200欧),对应的第一栅极偏压约-2.2~-2.3V左右,使6SN7两臂33K输出电阻上的压降为140V左右,对应的阳极电流为4.3mA左右。
根据EF89的内阻Ra、放大系数u和阴极电阻Rk,计算恒流源所呈现的交流电阻: R=Ra+(u+1)×Rk=900K+(3280+1)×0.2K=1556.2K=1.56M 这数值比常规长尾倒相电路的阴极电阻(20~30K)大了50多倍。
再查EF89曲线检验工作点是否合适,见下图:EF89的栅压-帘栅压-屏流曲线——栅压-2.3V、帘栅压100V,对应的屏流是8.5mA。
13
EF89帘栅极电流曲线:帘栅压100V,栅压-2.3V,对应的帘栅极电流3mA
14
由下图可见EF89工作于特性曲线的平坦区域。
实际测试表明,管内两边三极管参数完全一致的管子的两臂直流电压没有差异,不完全一致的,两臂直流电压可能有0.5V~2.0V的差异,但是两臂输出的交流电压的平衡度很好,即使屏流很不一致,只要跨导相差不大,输出电压也只有约0.2Vrms~0.3 Vrms的差异。
15
当阴随推动管采用12AT7时,尽管其自身栅压为-1.6~-2V不等,但由于12AT7本身栅压-屏流(Vg1-Ia)特性和阴极深度负反馈作用,对栅压跟随得很好,加到栅极电压是-32V左右,阴极也是-32V左右,相差不过零点几伏,所以麦景图MC-275图中标注12AZ7栅极电压是-57V,阴极也是-57V。开始我以为MC-275图标错了,实际做出来测量后才明白12AT7就是跟随得这么好。
起初打算将功放级的偏压改为阴极电阻偏压,在底板上增加了2×450欧姆的阴极电阻(美国西电后期黑色的矩形电阻)。这样的最大好处是:如果失去负偏压(阴极电阻开路),阳极电流也同时断开;如果负偏压改变(阴极电阻变值),阳极电流也同时改变,保证了功放管的安全。但是,由于十几年前从废钢场捡来的英国大盾EL34参数稍微有点不对称,推挽输出的两臂电流不完全一致,这不仅使谐波失真不能完全被抵消,而且还会产生交越失真。所以,为了能用上这些大盾名管,还是采用原先固定负偏压,以便于单独调整偏压,使两管电流对称。实践表明,原先采用的WXD2-53线绕10圈指针式电位器可靠性很高,负压回路都采用高可靠金属膜电阻,可靠性基本是有保证的。调试结果是:各管偏压相差并不大,约0.4V~0.6V,对管子的工作点影响不大。
(3)功率输出级的工作点选择
必须仔细设置EL34和TK88的工作点,使之满足中小音量时工作在A类,大音量时工作在AB1类的要求。对于EL34比较好办,因为手册给出了栅压—屏流曲线(Vg1-Ia),只要把工作点设置在Vg1-Ia曲线直线段的中点(全A类工作点)偏下一点即可。对于KT88,没有栅压—屏流曲线(Vg1-Ia),只能根据手册给出工作点条件,到Va-Ia曲线中去找。最终确定EL34的工作点是:Va=400V,Vg=-31~-32V,Ia=56mA。 KT88的工作点是:Va=400V,Vg=-40V,Ia=76mA。 EL34工作点曲线
最终调好EL34三极管接法的工作点是:Va=400V,Vg=-31~-32V,阴极0.22
16
欧电阻上电压降0.014V,阴极电流也就是Ia+Ig2=63mA
复核EL34工作点与最大功耗:
在最大功耗曲线与Vg=-32V交界处取点,由图可知:在负偏-32V时,电压可用到420V,电流可用到73mA;在负偏-32.5V时,电压可用到430V,电流可用到70mA。现在的Va=400V,Ik(Ia+Ig2)=63mA绝对在安全区域内。
做EL34负载线,校验最大不失真输出电压摆幅: 根据Morgan Jones所著的《电子管放大器》,可以把推挽输出级的其中一臂当作单端输出级对待,因此,取输出级的屏-屏电压800V和屏-屏负载(输出变压器初级)阻抗5.5K的一半,则Va=0时的Ia=400/2.75=145.45mA,取全值也有:Ia=800/5.5=145.45mA。Ia=0时,在Va轴的延长线上找到Va=800V的点。连接Ia=145.45mA和Va=800V两点,正好通过
17
Vg=-31V~-32V的工作点Q,表明负载线正确。
从工作点出发,沿负载线向右,没有遇到限制点,向左遇到出现栅流的Vg=0V,作为限制点,此点对应屏压Va=127V,于是
最大不失真输出电压峰峰值:Vpp=2×(400-127)=546V 最大不失真输出电压有效值:Vrms= Vpp/2√2=193V
单管最大不失真输出功率:P= (Vrms)/RL=(193)/2750=14W
两管推挽最大不失真输出功率:14W×2=28W。在输出变压器次级扬声器端子测得的电压是15V,P= (Vrms)/RL=(15)/8=28W,与在初级计算结果完全一致。
2
2
2
2
做KT88负载线,校验最大不失真输出电压摆幅:
与EL34同样方法做出负载线:连接Ia=145.45mA和Va=800V两点,正好通过Va=400V,Vg=-40V,Ia=76mA的工作点Q,表明负载线正确。
从工作点出发,沿负载线向右,没有遇到限制点,向左遇到出现栅流的Vg=0V,作为限制点,此点对应屏压Va=108V,于是:
最大不失真输出电压峰峰值:Vpp=2×(400-108)=584V 最大不失真输出电压有效值:Vrms= Vpp/2√2=206.5V
单管最大不失真输出功率:P= (Vrms)/RL=(206.5)/2750=15.5W
两管推挽最大不失真输出功率:15.5W×2=31W 复核KT88的最大功耗:
在Vg=-40V与最大功耗曲线交界取点,可见阳极电压可以用到418V,阳极电流可以用到96mA。现在的工作点:Va=400V,Ia=76mA绝对在安全区域内。
2
2
18
(三)音调控制电路的分析验证
本机音调电路采用SRPP电路。第一级SRPP电路的负载电阻的选择关系到失真度的大小。12AU7构成SRPP电路的负载RL=25K时失真度最小。最终的负载阻抗与RC衰减型音调电路输入阻抗有关。音调电路输入阻抗在最小值72.5K到最大值602K之间变化。当电容短路时,即把音调控制呈平坦特性的中频等效的阻抗可计算出为84.7K。据此可以算出最终负载阻抗是:
R0=RT0*RL÷(RT0-RL)=84.7*25÷(84.7-25)=35.5K,取36K。
本机的音调控制特性:最大提升量在低频是+6db不到一点,在高频是+6db,衰减量在100HZ和10KHZ时均为-9db。 (四)焊机制作 (1)绝不牺牲频响和信噪比去追求机内布线线美观而把线横平竖直地绑扎起来。除了把刚从电源变压器和整流板上引出来的电源线绑扎成一捆,以免松散而对信号线造成干扰以外,其他走线都不为了追求横平竖直、外表美观而绑扎成一捆。因为根据电磁学原理,线间离得越近,相互干扰越大:不同电压的线相互越平行地靠近,线间电容就越大;流过电流的线越平行地靠近,线间互感就越大。由于绑扎走线而额外增加的线间电容和线间互感势必会给整机的频率响应和本底噪声带来不良影响。
(2)为了避免交流电源线对信号线的交流感应干扰,必须保证所有电源线与信号线垂直相交。本机原先将电源布置在左侧,电源线出线都是从左至右,而信号通道走线是从前至后,这就自然保证所有电源线与信号线都垂直相交。
(3)一点接地。一点接地的概念是:来自不同电源(包括灯丝绕组)的电路“地”,不能“手握手”链接,应单独直接接到汇集的接地点;来自同一电源的电路“地”,可以就近接在本级的接地干线上,再接到汇集的接地点。根据这一原则,各级设置6mm2粗铜线作接地干线,同一级元件的地端就近接干线,再用导线单独引至接地点接地。本机的接地点汇集了14根接地线。
(4)信号线、元器件之间的连线全部采用德国铁氟龙镀银线,甚至电源,也大部分采用
19
了这种线。铁氟龙镀银线是上世纪80年代末从西德进口的工业自动化仪表柜的备用线。 (5)要注意灯丝绕组的负荷均衡分配,避免出现有的负荷重而电压过低、有的负荷轻而电压过高的情况,这都将对电子管寿命不利。同时还要注意推挽两个管子的灯丝绕组的负荷应一致,避免因此引起的推挽管屏流不对称。由于旁热管的灯丝与信号回路绝缘,所以分配时不必拘泥于直热管机灯丝绕组需左右声道分开的原则,只要考虑负荷均衡即可。 本机的本底噪声很低。输入短路,音量电位器开到最大,耳朵紧贴音箱也听不到一点噪音,实测此时功放输出的交流电压是0.35mV,而功放最大输出交流电压是20V,因此算出信噪比:S/N=20㏒20/0.00035=95.2db。
一点接地:接地点汇集了14根接地线。
20
24档步进音量电位器
前级、倒相级、推动级接线
(四)调试方波频率响应
21
为什么调试音频设备时要测试方波频率响应?因为音频信号是由无穷多的基波与泛音谐波组合而成的,HIFI音频器材必须完整地重现这些组合波形才是完美的高保真器材。如果器材性能不良,就会丢失音源波形信息,特别是高频泛音信息,所以听感细节缺乏、韵味乏陈、味同嚼蜡,松香味、质感缺失、这是市场上大部分器材的情况。
根据傅里叶定律,方波是由无穷多次正弦波组合而成的,用方波测试功放的频率响应,比正弦波测试更代表实际音频信号,更能反应功放器材的动态性能。目前采用正弦波的测试方法是不完善的,基本上只能反映其静态素质,所以造成许多器材指标好、听感不好的现象。 本机的实际听感很好,高频细节很多且柔顺,中频醇厚饱满,人声优美,低频力度很足且清晰,高低频两端延伸很宽,整体音场很开阔,声音很开扬,比原来300B失真小。但是听感是见仁见智的东西,用语言去形容怎么怎么好,大家不一定相信,而且语言也无法形容一种无形东西。20HZ~20KHZ方波响应波形最能说明音质和听感。波形不好和畸变严重的机子,听感一定好不到哪里去,反之,一定不会差。所以就不多说听感如何如何了,用方波频率响应照片来眼见为实地说明本机的音质和听感。
在三极管接法和音调电位器置于不提升也不衰减位置时,测试了这台KT88//EL34推挽机的方波频率响应。以下是EL34输出中等功率((10v)2/8Ω=12.5W)时的方波频率响应图:
左声道20HZ
右声道20HZ
22
左声道200HZ
右声道200HZ
23
左声道2000HZ
右声道2000HZ
24
左声道10KHZ
右声道10KHZ
25
左声道20KHZ
右声道20KHZ
26
EL34输出大功率((15v)2/8Ω=28W时的高频方波响应,见下图: 左声道10KHZ(Y轴每格5V,电压幅度5v×3格=15v)
右声道10KHZ
27
左声道20KHZ
右声道20KHZ
28
输出端接8欧25W绕线电阻负载时的方波响应波形 10KHZ
20KHZ
29
30