新人教八年级上数学全套精品教案 - 图文 下载本文

http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!

(3)k<0 b>0 (4)k<0 b<0 解答: 1.(1.5,0) (0,-3) 三、四、一 增大 2.(1)三、二、一 (2)三、四、一 (3)二、一、四 (4)二、三、四 小结

本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性. 课后作业

习题11.2─3、4、8题. 活动与探究

在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.

1.y=x-1 y=x y=x+1

2.y=-2x+1 y=-2x y=-2x-1 过程与结论:

b决定直线y=kx+b与y轴交点的坐标(0,b). 当b>0时,交点在原点上方. 当b=0时,交点即原点. 当b<0时,交点在原点下方. 备用题:

1.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是______?函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数. 2.若一次函数y=(1-2m)x+3图象经过A(x1、y1)、B(x2、y2)两点.当x1?y2,则m的取值范围是什么? 答案:

1 1.1 正比例 3 一次

2.解:∵当x1y2, ∴y随x增大而减小. 据一次函数性质可知:

只有当k<0时,y随x增大而减小 故1-2m<0

课件第一站 http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!

http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!

1 ∴m>2.毛

§11.2.2 一次函数(二)

教学目标

(一)教学知识点

1.学会用待定系数法确定一次函数解析式.毛 2.具体感知数形结合思想在一次函数中的应用 (二)能力训练目标

1.经历待定系数法应用过程,提高研究数学问题的技能. 2.体验数形结合,逐步学习利用这一思想分析解决问题. 教学重点

待定系数法确定一次函数解析式. 教学难点

灵活运用有关知识解决相关问题.

教学方法

归纳─总结 教具准备

多媒体演示. 教学过程

1.提出问题,创设情境

我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢? 这将是我们这节课要解决的主要问题,大家可有兴趣? Ⅱ.导入新课

有这样一个问题,大家来分析思考,寻求解决的办法. [活动]

活动设计内容:

已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式.

联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?

活动设计意图:

通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解. 教师活动:

引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.

课件第一站 http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!

http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!

学生活动:

在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程. 活动过程及结论:

分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得. 设这个一次函数解析式为y=kx+b.

?3k?b?5??4k?b??9

因为y=k+b的图象过点(3,5)与(-4,-9),所以??k?2?b??1

解之,得?故这个一次函数解析式为y=2x-1。结论:

函数解析式 选取 满足条件的两定点 画出 一次函数的图象 y=kx+b 解出 (x1,y1)与(x1,y2) 选取 直线L

像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. 练习:

1.已知一次函数y=kx+2,当x=5时y的值为4,求k值. 2.已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值.

3. 生物学家研究表明,某种蛇的长度y (CM)是其尾长x(CM)的一次函数,当蛇的尾长为6CM时, 蛇的长为45.5CM; 当蛇的尾长为14CM时, 蛇的长为105.5CM.当一条蛇的尾长为10 CM时,这条蛇的长度是多少? 4.教科书第35页第6题. 解答:

1.当x=5时y值为4.

2 即4=5k+2,∴k=5

?0?9k?b?20?24k?b

2.由题意可知:?4??k?3??b??12 解之得,?

作业: 教科书第35页第5,7题. 备选题:

1. 已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点( ) A.(-1,1) B.(2,2) C.(-2,2) D.(2,-2)

2. 若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求 b的值.

课件第一站 http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!

http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!

3.点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d为多少?

§11.2.2 一次函数(三)

教学目标

(一)教学知识点

利用一次函数知识解决相关实际问题. (二)能力训练目标

体会解决问题方法多样性,发展创新实践能力。 教学重点

灵活运用知识解决相关问题. 教学难点

灵活运用有关知识解决相关问题. 教学方法

实践─应用─创新. 教具准备 多媒体演示. 教学过程

1.提出问题,创设情境

我们前面学习了有关一次函数的一些知识及如何确定解析式,如何利用一次函数知识解决相关实践问题呢?

这将是我们这节课要解决的主要问题. Ⅱ.导入新课

下面我们来学习一次函数的应用.

例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟.试写出这段时间里她跑步速度y(米/分)随跑步时间x(分)变化的函数关系式,并画出图象.

分析:本题y随x变化的规律分成两段:前5分钟与后10分钟.写y随x?变化函数关系式时要分成两部分.画图象时也要分成两段来画,且要注意各自变量的取值范围.

?20x?200?300解:y=?(0?x?5)(5?x?15)

课件第一站 http://www.kejianz.com 百万教学资源,完全免费,无须注册,天天更新!