2018年普陀区初三数学二模试卷及参考答案评分标准 下载本文

精品文档

24.(本题满分12分)

如图10,在平面直角坐标系xOy中,直线y?kx?3与x轴、y轴分别相交于点A、B,

17并与抛物线y??x2?bx?的对称轴交于点C?2,2?,抛物线的顶点是点D.

42(1)求k和b的值;

(2)点G是y轴上一点,且以点B、C、G为顶点的三角形与△BCD相似,求点G的坐

标;

(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.

y

25.(本题满分14分)

已知P是⊙O的直径BA延长线上的一个动点,?P的另一边交⊙O于点C、D,两点位于AB的上方,AB=6,OP=m,sinP=,如图11所示.另一个半径为6的⊙O1经过点C、D,圆心距OO1=n. (1)当m=6时,求线段CD的长;

(2)设圆心O1在直线AB上方,试用n的代数式表示m;

(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.

D

1 O

1

x

图10

13 P

图11

C A

O

B

A

O

B

备用图

。 5欢迎下载

精品文档

2018年普陀区初三数学二模参考答案及评分说明

一、选择题:(本大题共6题,每题4分,满分24分)

1.(B); 2.(C); 3.(A); 4.(C); 5.(D); 6.(B). 二、填空题:(本大题共12题,每题4分,满分48分) 7.

23xy; 32?3; y8. x?3; 9. 4.027?108 ; 12. y?x2等;

10. y?11.>;

13.6; 14.

2 ; 1115.315; 18.(?5,?1?16.2a?b;

2三、解答题

17.3.14;

11). 2(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)

x+2x2x?2g?19.解:原式? ··············· (3分) x?x?2?2(x?2)?x?2?x1 ······················ (2分) ?x?2x?2x?1. ························· (1分) ?x?2?当x?2?2时,原式?2?2?1 ·················· (1分)

2?2?22?3 ··················· (1分) 2 ??2?32. ·················· (2分) 220.解:由①得,x≥-2.························ (3分)

由②得,x<3. ························ (3分) ∴原不等式组的解集是?2≤x<3. ··············· (2分) 所以,原不等式组的整数解是?2、?1、0、1、2. ········ (2分)

21.解:

。 6欢迎下载

精品文档

(1)∵DE⊥AB,∴?DEA?90?

又∵?DAB?45o,∴DE?AE. ················· (1分)

3DE3,∴······· (1分) ?. 4BE4设DE?3x,那么AE?3x,BE?4x.

在Rt△DEB中,?DEB?90?,tanB?∵AB?7,∴3x?4x?7,解得x?1. ··············· (2分) ∴DE?3. ·························· (1分) (2) 在Rt△ADE中,由勾股定理,得AD?32. ··········· (1分)

同理得BD?5. ························· (1分) 在Rt△ABC中,由tanB?∴CD?

2834,可得cosB?.∴BC?. ···· (1分) 4553. ·························· (1分) 5CD2?. ··················· (1分) AD102. 10∴cos?CDA?

即?CDA的余弦值为22.解:

(1)x?0的实数; ·························· (2分) (2)?1; ······························ (2分) (3)图(略); ····························· (4分) (4)图像关于y轴对称; 图像在x轴的上方;

在对称轴的左侧函数值y随着x的增大而增大,在对称轴的右侧函数值y随着x的增大而减小;

函数图像无限接近于两坐标轴,但永远不会和坐标轴相交等. ······ (2分) 23.证明:

(1)∵ AD∥BC,DE∥AB,∴四边形ABED是平行四边形. ······ (2分)

∵FG∥AD,∴同理

FGCF. ···················· (1分) ?ADCAEFCF . ························ (1分) ?ABCAFGEF得=

ABAD。

7欢迎下载

精品文档

∵FG?EF,∴AD?AB. ···················· (1分) ∴四边形ABED是菱形. ····················· (1分) (2)联结BD,与AE交于点H.

∵四边形ABED是菱形,∴EH?1AE,BD⊥AE. ········ (2分) 2得?DHE?90o .同理?AFE?90o.

∴?DHE=?AFE. ······················· (1分) 又∵?AED是公共角,∴△DHE∽△AFE. ············ (1分)

EHDE. ························· (1分) ?EFAE1∴AE2?EFgED. ······················· (1分) 2∴24.解:

1(1) 由直线y?kx?3经过点C?2,2?,可得k??. ··········· (1分)

217由抛物线y??x2?bx?的对称轴是直线x?2,可得b?1. ····· (1分)

421(2) ∵直线y??x?3与x轴、y轴分别相交于点A、B,

2∴点A的坐标是?6,0?,点B的坐标是?0,3?. ············ (2分)

?9?∵抛物线的顶点是点D,∴点D的坐标是?2,?. ·········· (1分)

?2?∵点G是y轴上一点,∴设点G的坐标是?0,m?. ∵△BCG与△BCD相似,又由题意知,?GBC??BCD,

∴△BCG与△BCD相似有两种可能情况: ·············· (1分) ①如果

3?m5BGBC,那么,解得m===1,∴点G的坐标是?0,1?. (1分)

5CBCD523?m5BGBC1?1?,那么,解得m=,∴点G的坐标是?0,?. (1分) ==522CDCB5??2②如果

?1?综上所述,符合要求的点G有两个,其坐标分别是?0,1?和?0,? .

?2?9??9??(3)点E的坐标是??1,?或?2,?. ················· (2分+2分)

42????。

8欢迎下载