∴
n?1??1???2n?1恒成立. ∴数列?bn?中的最大项是b4?3,最小项是b3??1
(ⅰ)当n为奇数时,即?当且仅当n∴??2n?1恒成立,
(2)由bn?1?11得bn?1? ann?a1?11在???,1?a1?和?1?a1,???上分别是单调减函数,
x?a1?1?1时,2n?1有最小值为1,
又函数
?1.
??2n?1恒成立,
有最大值?2,
f(x)?1?(ⅱ)当n为偶数时,即?当且仅当n?2时,?2∴?n?1且x?1?a1时y?1;x?1?a1时y?1.
*∵对任意的n?N,都有bn∴a1的取值范围是(?7,?6)
?b8,∴7?1?a1?8 ∴?7?a1??6
??2.
?1,又?为非零整数,则???1.
??1,使得对任意n?N*,都有bn?1?bn
?n,
即?2??综上所述,存在?21.(1)圆心到直线的距离d1AnBn)2?2an?2,则an?1?2?2(an?2)2
?易得an?3?2n?1?2nbn?(an?2)?n?2n?1,3012n?1(2)Sn?1?2?2?2?3?2?????n?2 ?an?1?(2Sn?1?21?2?22?3?23?????n?2n相减得Sn?(n?1)2n?1
?2S2?4,∴4a1?22.解:(1)∵S4解得d3?4d?2(2a1?d)?4 2?1
75??,∴数列?an?的通项公式为an?a1?(n?1)?n?
2211∴bn?1? ?1?7ann?2(2)∵a1∵函数
f(x)?1?1x?72在???,??7??7??和?,???上分别是单调减函数, 2??2?∴b3?b2?b1?1当n?4时,1?bn?b4
- 17 -
- 18 -
w.w.w.k.s.5.u.c.o.m
- 19 -