北师大版初一数学上册教案全册 下载本文

§2.8有理数的除法

教学目标

1.使学生理解有理数倒数的意义;

2.使学生掌握有理数的除法法则,能够熟练地进行除法运算; 3.培养学生观察、归纳、概括及运算能力. 教学重点和难点

重点:有理数除法法则. 难点:(1)商的符号的确定.

(2)0不能作除数的理解.

教学方法:三疑三探教学 教学过程

一、设疑自探

1、复习

①.叙述有理数乘法法则. ②.叙述有理数乘法的运算律.

③.计算:(1)3×(-2); (2)-3×5; (3)(-2)×(-5). 2、设疑

因为3×(-2)=-6,所以3x=-6时,可以解得x=-2; 同样-3×5=-15,解简易方程-3x=-15,得x=5.

在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.

二.解疑合探

1.有埋数的倒数

0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.) 提问:怎样求一个数的倒数?

答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分

数再求倒数. 什么性质

所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.

这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义. 2.有理数除法法则

利用有理数倒数的概念,我们进一步学习有理数除法. 因为(-2)×(-4)=8,所以8÷(-4)=-2.

由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即 除以一个数等于乘以这个数的倒数. 0不能作除数.

3.有理数除法的符号法则

观察上面的练习,引导学生总结出有理数除法的商的符号法则: 两数相除,同号得正,异号得负.

掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:

两数相除,同号得正,异号得负,并把绝对值相除.

0除以任何一个不为0的数,都得0.(分母≠0).利用除法法则可以化简分数.

三.质疑再探:例计算:(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

小结

1.指导学生看书,重点是除法法则.

2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.

作业:P71 1、2、5

练习设计 习题2.12 1、2、3、4、5、6题 板书设计

§2.9有理数的除法 (一)知识回顾 (三)例题解析 (五)课堂小结 例题 (二)观察发现 (四)课堂练习 练习设计

八、教学后记

§2.9有理数的乘方

教学目标

1.理解有理数乘方的概念,掌握有理数乘方的运算;

2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神; 3.渗透分类讨论思想. 教学重点和难点

重点:有理数乘方的运算.

难点:有理数乘方运算的符号法则. 教学方法:三疑三探教学 教学过程

一、设疑自探

1、复习引入

在小学我们已经学习过a·a,记作a,读作a的平方(或a的二次方);a·a·a记作a,读作a的立方(或a的三次方);那么,a·a·a·a

(n是正整数)呢?

在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.

2、设疑

①.求n个相同因数的积的运算叫做乘方.

②.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数. 一般地,在a中,a取任意有理数,n取正整数.

应当注意,乘方是一种运算,幂是乘方运算的结果.当a看作a的n次方的结果时,也可以读作a的n次幂. ③.我们知道,乘方和加、减、乘、除一样,也是一种运算,a就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.

n

n

n

2

3

二.解疑合探

例1 计算:

教师指出:2就是2,指数1通常不写.让三个学生在黑板上计算.

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)横向观察:正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零. (2)纵向观察:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等. (3)任何一个数的偶次幂是什么数? 任何一个数的偶次幂都是非负数. 你能把上述的结论用数学符号语言表示吗? 当a>0时,a>0(n是正整数); 当a=0时,a=0(n是正整数). (以上为有理数乘方运算的符号法则) a=(-a)(n是正整数); a

2n-12n2n

2n

nn

1

=-(-a)

2n-1

(n是正整数);

a≥0(a是有理数,n是正整数).

三.质疑再探:

例2 计算:(1)(-3),(-3),[-(-3)];(2)-3,-3,-(-3);

让三个学生在黑板上计算.

教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)的底数是-a,表示n个(-a)相乘,-a是a的相反数,这是(-a)与-a的区别.

教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就

n

n

n

n

n

2

3

5

2

3

5

是另一种运算了.

四.运用拓展:

课堂练习 计算:(2)(-1)练习设计

3.当a=-3,b=-5,c=4时,求下列各代数式的值:

(1)(a+b); (2)a-b+c; (3)(-a+b-c); (4)a+2ab+b. 4.当a是负数时,判断下列各式是否成立. (1)a=(-a); (2)a=(-a);

5.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么? 6.若(a+1)+|b-2|=0,求a板书设计

§2.10有理数的乘方(1) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习 练习设计

七、教学后记

*

2

2000

*

2

2

3

3

2

2

2

2

2

2

2

2001

,3×2,-4×(-4),-2÷(-2); (3)(-1)-1.

22233n

小结 让学生回忆,做出小结:1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.

·b的值.

3