µÚ1Õ Ð÷ÂÛ
1£®¼òÊöÏÂÁиÅÄÊý¾Ý¡¢Êý¾ÝÔªËØ¡¢Êý¾ÝÏî¡¢Êý¾Ý¶ÔÏó¡¢Êý¾Ý½á¹¹¡¢Âß¼½á¹¹¡¢´æ´¢½á¹¹¡¢³éÏóÊý¾ÝÀàÐÍ¡£
´ð°¸£º
Êý¾Ý£ºÊǿ͹ÛÊÂÎïµÄ·ûºÅ±íʾ£¬Ö¸ËùÓÐÄÜÊäÈëµ½¼ÆËã»úÖв¢±»¼ÆËã»ú³ÌÐò´¦ÀíµÄ·ûºÅµÄ×ܳơ£ÈçÊýѧ¼ÆËãÖÐÓõ½µÄÕûÊýºÍʵÊý£¬Îı¾±à¼ËùÓõ½µÄ×Ö·û´®£¬¶àýÌå³ÌÐò´¦ÀíµÄͼÐΡ¢Í¼Ïñ¡¢ÉùÒô¡¢¶¯»µÈͨ¹ýÌØÊâ±àÂ붨ÒåºóµÄÊý¾Ý¡£
Êý¾ÝÔªËØ£ºÊÇÊý¾ÝµÄ»ù±¾µ¥Î»£¬ÔÚ¼ÆËã»úÖÐͨ³£×÷Ϊһ¸öÕûÌå½øÐп¼ÂǺʹ¦Àí¡£ÔÚÓÐЩÇé¿öÏ£¬Êý¾ÝÔªËØÒ²³ÆÎªÔªËØ¡¢½áµã¡¢¼Ç¼µÈ¡£Êý¾ÝÔªËØÓÃÓÚÍêÕûµØÃèÊöÒ»¸ö¶ÔÏó£¬ÈçÒ»¸öѧÉú¼Ç¼£¬Ê÷ÖÐÆåÅ̵ÄÒ»¸ö¸ñ¾Ö£¨×´Ì¬£©¡¢Í¼ÖеÄÒ»¸ö¶¥µãµÈ¡£
Êý¾ÝÏÊÇ×é³ÉÊý¾ÝÔªËØµÄ¡¢ÓжÀÁ¢º¬ÒåµÄ¡¢²»¿É·Ö¸îµÄ×îСµ¥Î»¡£ÀýÈ磬ѧÉú»ù±¾ÐÅÏ¢±íÖеÄѧºÅ¡¢ÐÕÃû¡¢ÐÔ±ðµÈ¶¼ÊÇÊý¾ÝÏî¡£
Êý¾Ý¶ÔÏó£ºÊÇÐÔÖÊÏàͬµÄÊý¾ÝÔªËØµÄ¼¯ºÏ£¬ÊÇÊý¾ÝµÄÒ»¸ö×Ó¼¯¡£ÀýÈ磺ÕûÊýÊý¾Ý¶ÔÏóÊǼ¯ºÏN={0£¬¡À1£¬¡À2£¬?}£¬×Öĸ×Ö·ûÊý¾Ý¶ÔÏóÊǼ¯ºÏC={¡®A¡¯£¬¡®B¡¯£¬?£¬¡®Z¡¯£¬ ¡®a¡¯£¬¡®b¡¯£¬?£¬¡®z¡¯}£¬Ñ§Éú»ù±¾ÐÅÏ¢±íÒ²¿ÉÊÇÒ»¸öÊý¾Ý¶ÔÏó¡£
Êý¾Ý½á¹¹£ºÊÇÏ໥֮¼ä´æÔÚÒ»ÖÖ»ò¶àÖÖÌØ¶¨¹ØÏµµÄÊý¾ÝÔªËØµÄ¼¯ºÏ¡£»»¾ä»°Ëµ£¬Êý¾Ý½á¹¹ÊÇ´ø¡°½á¹¹¡±µÄÊý¾ÝÔªËØµÄ¼¯ºÏ£¬¡°½á¹¹¡±¾ÍÊÇÖ¸Êý¾ÝÔªËØÖ®¼ä´æÔڵĹØÏµ¡£
Âß¼½á¹¹£º´ÓÂß¼¹ØÏµÉÏÃèÊöÊý¾Ý£¬ËüÓëÊý¾ÝµÄ´æ´¢Î޹أ¬ÊǶÀÁ¢ÓÚ¼ÆËã»úµÄ¡£Òò´Ë£¬Êý¾ÝµÄÂß¼½á¹¹¿ÉÒÔ¿´×÷ÊÇ´Ó¾ßÌåÎÊÌâ³éÏó³öÀ´µÄÊýѧģÐÍ¡£
´æ´¢½á¹¹£ºÊý¾Ý¶ÔÏóÔÚ¼ÆËã»úÖеĴ洢±íʾ£¬Ò²³ÆÎªÎïÀí½á¹¹¡£
³éÏóÊý¾ÝÀàÐÍ£ºÓÉÓû§¶¨ÒåµÄ£¬±íʾӦÓÃÎÊÌâµÄÊýѧģÐÍ£¬ÒÔ¼°¶¨ÒåÔÚÕâ¸öÄ£ÐÍÉϵÄÒ»×é²Ù×÷µÄ×ܳơ£¾ßÌå°üÀ¨Èý²¿·Ö£ºÊý¾Ý¶ÔÏó¡¢Êý¾Ý¶ÔÏóÉϹØÏµµÄ¼¯ºÏºÍ¶ÔÊý¾Ý¶ÔÏóµÄ»ù±¾²Ù×÷µÄ¼¯ºÏ¡£
2£®ÊÔ¾ÙÒ»¸öÊý¾Ý½á¹¹µÄÀý×Ó£¬ÐðÊöÆäÂß¼½á¹¹ºÍ´æ´¢½á¹¹Á½·½ÃæµÄº¬ÒåºÍÏ໥¹ØÏµ¡£
´ð°¸£º
ÀýÈçÓÐÒ»ÕÅѧÉú»ù±¾ÐÅÏ¢±í£¬°üÀ¨Ñ§ÉúµÄѧºÅ¡¢ÐÕÃû¡¢ÐԱ𡢼®¹á¡¢×¨ÒµµÈ¡£Ã¿¸öѧÉú»ù±¾ÐÅÏ¢¼Ç¼¶ÔÓ¦Ò»¸öÊý¾ÝÔªËØ£¬Ñ§Éú¼Ç¼°´Ë³ÐòºÅÅÅÁУ¬ÐγÉÁËѧÉú»ù±¾ÐÅÏ¢¼Ç¼µÄÏßÐÔÐòÁС£¶ÔÓÚÕû¸ö±íÀ´Ëµ£¬Ö»ÓÐÒ»¸ö¿ªÊ¼½áµã(ËüµÄÇ°ÃæÎ޼Ǽ)ºÍÒ»¸öÖն˽áµã(ËüµÄºóÃæÎ޼Ǽ)£¬ÆäËûµÄ½áµãÔò¸÷ÓÐÒ»¸öÒ²Ö»ÓÐÒ»¸öÖ±½ÓǰÇ÷ºÍÖ±½Óºó¼Ì¡£Ñ§Éú¼Ç¼֮¼äµÄÕâÖÖ¹ØÏµ¾ÍÈ·¶¨ÁËѧÉú±íµÄÂß¼½á¹¹£¬¼´ÏßÐԽṹ¡£
ÕâЩѧÉú¼Ç¼ÔÚ¼ÆËã»úÖеĴ洢±íʾ¾ÍÊÇ´æ´¢½á¹¹¡£Èç¹ûÓÃÁ¬ÐøµÄ´æ´¢µ¥Ôª(ÈçÓÃÊý×é±íʾ)À´´æ·ÅÕâЩ¼Ç¼£¬Ôò³ÆÎªË³Ðò´æ´¢½á¹¹£»Èç¹û´æ´¢µ¥Ôª²»Á¬Ðø£¬¶øÊÇËæ»ú´æ·Å¸÷¸ö¼Ç¼£¬È»ºóÓÃÖ¸Õë½øÐÐÁ´½Ó£¬Ôò³ÆÎªÁ´Ê½´æ´¢½á¹¹¡£
¼´ÏàͬµÄÂß¼½á¹¹£¬¿ÉÒÔ¶ÔÓ¦²»Í¬µÄ´æ´¢½á¹¹¡£ 3£®¼òÊöÂß¼½á¹¹µÄËÄÖÖ»ù±¾¹ØÏµ²¢»³öËüÃǵĹØÏµÍ¼¡£
1
´ð°¸£º £¨1£©¼¯ºÏ½á¹¹
Êý¾ÝÔªËØÖ®¼ä³ýÁË¡°ÊôÓÚͬһ¼¯ºÏ¡±µÄ¹ØÏµÍ⣬±ðÎÞÆäËû¹ØÏµ¡£ÀýÈ磬ȷ¶¨Ò»ÃûѧÉúÊÇ·ñΪ°à¼¶³ÉÔ±£¬Ö»Ð轫°à¼¶¿´×öÒ»¸ö¼¯ºÏ½á¹¹¡£
£¨2£©ÏßÐԽṹ
Êý¾ÝÔªËØÖ®¼ä´æÔÚÒ»¶ÔÒ»µÄ¹ØÏµ¡£ÀýÈ磬½«Ñ§ÉúÐÅÏ¢Êý¾Ý°´ÕÕÆäÈëѧ±¨µ½µÄʱ¼äÏȺó˳Ðò½øÐÐÅÅÁУ¬½«×é³ÉÒ»¸öÏßÐԽṹ¡£
£¨3£©Ê÷½á¹¹
Êý¾ÝÔªËØÖ®¼ä´æÔÚÒ»¶Ô¶àµÄ¹ØÏµ¡£ÀýÈ磬Ôڰ༶µÄ¹ÜÀíÌåϵÖУ¬°à³¤¹ÜÀí¶à¸ö×鳤£¬Ã¿Î»×鳤¹ÜÀí¶àÃû×éÔ±£¬´Ó¶ø¹¹³ÉÊ÷Ðνṹ¡£
£¨4£©Í¼½á¹¹»òÍø×´½á¹¹
Êý¾ÝÔªËØÖ®¼ä´æÔÚ¶à¶Ô¶àµÄ¹ØÏµ¡£ÀýÈ磬¶àλͬѧ֮¼äµÄÅóÓѹØÏµ£¬ÈκÎÁ½Î»Í¬Ñ§¶¼¿ÉÒÔÊÇÅóÓÑ£¬´Ó¶ø¹¹³ÉͼÐνṹ»òÍø×´½á¹¹¡£
ÆäÖÐÊ÷½á¹¹ºÍͼ½á¹¹¶¼ÊôÓÚ·ÇÏßÐԽṹ¡£
ËÄÀà»ù±¾Âß¼½á¹¹¹ØÏµÍ¼
4£®´æ´¢½á¹¹ÓÉÄÄÁ½ÖÖ»ù±¾µÄ´æ´¢·½·¨ÊµÏÖ£¿ ´ð°¸£º
£¨1£©Ë³Ðò´æ´¢½á¹¹
˳Ðò´æ´¢½á¹¹ÊǽèÖúÔªËØÔÚ´æ´¢Æ÷ÖеÄÏà¶ÔλÖÃÀ´±íʾÊý¾ÝÔªËØÖ®¼äµÄÂß¼¹ØÏµ£¬Í¨³£½èÖú³ÌÐòÉè¼ÆÓïÑÔµÄÊý×éÀàÐÍÀ´ÃèÊö¡£
£¨2£©Á´Ê½´æ´¢½á¹¹
˳Ðò´æ´¢½á¹¹ÒªÇóËùÓеÄÔªËØÒÀ´Î´æ·ÅÔÚһƬÁ¬ÐøµÄ´æ´¢¿Õ¼äÖУ¬¶øÁ´Ê½´æ´¢½á¹¹£¬ÎÞÐèÕ¼ÓÃÒ»Õû¿é´æ´¢¿Õ¼ä¡£µ«ÎªÁ˱íʾ½áµãÖ®¼äµÄ¹ØÏµ£¬ÐèÒª¸øÃ¿¸ö½áµã¸½¼ÓÖ¸Õë×ֶΣ¬ÓÃÓÚ´æ·Åºó¼ÌÔªËØµÄ´æ´¢µØÖ·¡£ËùÒÔÁ´Ê½´æ´¢½á¹¹Í¨³£½èÖúÓÚ³ÌÐòÉè¼ÆÓïÑÔµÄÖ¸ÕëÀàÐÍÀ´ÃèÊö¡£
5£®Ñ¡ÔñÌâ
£¨1£©ÔÚÊý¾Ý½á¹¹ÖУ¬´ÓÂß¼ÉÏ¿ÉÒÔ°ÑÊý¾Ý½á¹¹·Ö³É£¨ £©¡£
A£®¶¯Ì¬½á¹¹ºÍ¾²Ì¬½á¹¹ B£®½ô´Õ½á¹¹ºÍ·Ç½ô´Õ½á¹¹
2
C£®ÏßÐԽṹºÍ·ÇÏßÐԽṹ D£®ÄÚ²¿½á¹¹ºÍÍⲿ½á¹¹ ´ð°¸£ºC
£¨2£©ÓëÊý¾ÝÔªËØ±¾ÉíµÄÐÎʽ¡¢ÄÚÈÝ¡¢Ïà¶ÔλÖᢸöÊýÎ޹صÄÊÇÊý¾ÝµÄ£¨ £©¡£
A£®´æ´¢½á¹¹ B£®´æ´¢ÊµÏÖ C£®Âß¼½á¹¹ D£®ÔËËãʵÏÖ ´ð°¸£ºC
£¨3£©Í¨³£ÒªÇóͬһÂß¼½á¹¹ÖеÄËùÓÐÊý¾ÝÔªËØ¾ßÓÐÏàͬµÄÌØÐÔ£¬ÕâÒâζ×Å£¨ £©¡£ A£®Êý¾Ý¾ßÓÐÍ¬Ò»ÌØµã
B£®²»½öÊý¾ÝÔªËØËù°üº¬µÄÊý¾ÝÏîµÄ¸öÊýÒªÏàͬ£¬¶øÇÒ¶ÔÓ¦Êý¾ÝÏîµÄÀàÐÍÒªÒ»Ö C£®Ã¿¸öÊý¾ÝÔªËØ¶¼Ò»Ñù
D£®Êý¾ÝÔªËØËù°üº¬µÄÊý¾ÝÏîµÄ¸öÊýÒªÏàµÈ ´ð°¸£ºB
£¨4£©ÒÔÏÂ˵·¨ÕýÈ·µÄÊÇ£¨ £©¡£ A£®Êý¾ÝÔªËØÊÇÊý¾ÝµÄ×îСµ¥Î» B£®Êý¾ÝÏîÊÇÊý¾ÝµÄ»ù±¾µ¥Î»
C£®Êý¾Ý½á¹¹ÊÇ´øÓнṹµÄ¸÷Êý¾ÝÏîµÄ¼¯ºÏ
D£®Ò»Ð©±íÃæÉϺܲ»ÏàͬµÄÊý¾Ý¿ÉÒÔÓÐÏàͬµÄÂß¼½á¹¹ ´ð°¸£ºD
½âÊÍ£ºÊý¾ÝÔªËØÊÇÊý¾ÝµÄ»ù±¾µ¥Î»£¬Êý¾ÝÏîÊÇÊý¾ÝµÄ×îСµ¥Î»£¬Êý¾Ý½á¹¹ÊÇ´øÓнṹ
µÄ¸÷Êý¾ÝÔªËØµÄ¼¯ºÏ¡£
£¨5£©Ëã·¨µÄʱ¼ä¸´ÔÓ¶ÈÈ¡¾öÓÚ£¨ £©¡£ A£®ÎÊÌâµÄ¹æÄ£ ´ð°¸£ºD
½âÊÍ£ºËã·¨µÄʱ¼ä¸´ÔӶȲ»½öÓëÎÊÌâµÄ¹æÄ£Óйأ¬»¹ÓëÎÊÌâµÄÆäËûÒòËØÓйء£ÈçijЩ
ÅÅÐòµÄËã·¨£¬ÆäÖ´ÐÐʱ¼äÓë´ýÅÅÐò¼Ç¼µÄ³õʼ״̬Óйء£Îª´Ë£¬ÓÐʱ»á¶ÔËã·¨ÓÐ×îºÃ¡¢×ÒÔ¼°Æ½¾ùʱ¼ä¸´ÔÓ¶ÈµÄÆÀ¼Û¡£
£¨6£©ÒÔÏÂÊý¾Ý½á¹¹ÖУ¬£¨ £©ÊÇ·ÇÏßÐÔÊý¾Ý½á¹¹
A£®Ê÷ B£®×Ö·û´® C£®¶ÓÁÐ D£®Õ» ´ð°¸£ºA
6£®ÊÔ·ÖÎöÏÂÃæ¸÷³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£ £¨1£©x=90; y=100;
while(y>0)
if(x>100) {x=x-10;y--;}
else x++; ´ð°¸£ºO(1)
½âÊÍ£º³ÌÐòµÄÖ´ÐдÎÊýΪ³£Êý½×¡£
3
B£®´ý´¦ÀíÊý¾ÝµÄ³õ̬ D£®AºÍB
C£®¼ÆËã»úµÄÅäÖÃ
£¨2£©for (i=0; i for (j=0; j ´ð°¸£ºO(m*n) ½âÊÍ£ºÓï¾äa[i][j]=0;µÄÖ´ÐдÎÊýΪm*n¡£ £¨3£©s=0; for i=0; i for(j=0; j s+=B[i][j]; sum=s; 2 ´ð°¸£ºO(n) ½âÊÍ£ºÓï¾äs+=B[i][j];µÄÖ´ÐдÎÊýΪn¡£ £¨4£©i=1; while(i<=n) i=i*3; ´ð°¸£ºO(log3n) ½âÊÍ£ºÓï¾äi=i*3;µÄÖ´ÐдÎÊýΪ ?log3n?¡£ £¨5£©x=0; for(i=1; i ´ð°¸£ºO(n) ½âÊÍ£ºÓï¾äx++;µÄÖ´ÐдÎÊýΪn-1+n-2+??£«1= n(n-1)/2¡£ £¨6£©x=n; //n>1 y=0; while(x¡Ý(y+1)* (y+1)) y++; ´ð°¸£ºO(n) ½âÊÍ£ºÓï¾äy++;µÄÖ´ÐдÎÊýΪ ?n?¡£ 2 4 µÚ2Õ ÏßÐÔ±í 1£®Ñ¡ÔñÌâ £¨1£©Ë³Ðò±íÖеÚÒ»¸öÔªËØµÄ´æ´¢µØÖ·ÊÇ100£¬Ã¿¸öÔªËØµÄ³¤¶ÈΪ2£¬ÔòµÚ5¸öÔªËØµÄµØÖ·ÊÇ£¨ £©¡£ A£®110 B£®108 C£®100 D£®120 ´ð°¸£ºB ½âÊÍ£ºË³Ðò±íÖеÄÊý¾ÝÁ¬Ðø´æ´¢£¬ËùÒÔµÚ5¸öÔªËØµÄµØÖ·Îª£º100+2*4=108¡£ £¨2£©ÔÚn¸ö½áµãµÄ˳Ðò±íÖУ¬Ëã·¨µÄʱ¼ä¸´ÔÓ¶ÈÊÇO(1)µÄ²Ù×÷ÊÇ£¨ £©¡£ A£®·ÃÎʵÚi¸ö½áµã£¨1¡Üi¡Ün£©ºÍÇóµÚi¸ö½áµãµÄÖ±½ÓǰÇý£¨2¡Üi¡Ün£© B£®ÔÚµÚi¸ö½áµãºó²åÈëÒ»¸öнáµã£¨1¡Üi¡Ün£© C£®É¾³ýµÚi¸ö½áµã£¨1¡Üi¡Ün£© D£®½«n¸ö½áµã´ÓСµ½´óÅÅÐò ´ð°¸£ºA ½âÊÍ£ºÔÚ˳Ðò±íÖвåÈëÒ»¸ö½áµãµÄʱ¼ä¸´ÔӶȶ¼ÊÇO(n2)£¬ÅÅÐòµÄʱ¼ä¸´ÔÓ¶ÈΪO(n2) »òO(nlog2n)¡£Ë³Ðò±íÊÇÒ»ÖÖËæ»ú´æÈ¡½á¹¹£¬·ÃÎʵÚi¸ö½áµãºÍÇóµÚi¸ö½áµãµÄÖ±½ÓǰÇý¶¼¿ÉÒÔÖ±½Óͨ¹ýÊý×éµÄϱêÖ±½Ó¶¨Î»£¬Ê±¼ä¸´ÔÓ¶ÈÊÇO(1)¡£ £¨3£© ÏòÒ»¸öÓÐ127¸öÔªËØµÄ˳Ðò±íÖвåÈëÒ»¸öÐÂÔªËØ²¢±£³ÖÔÀ´Ë³Ðò²»±ä£¬Æ½¾ùÒªÒÆ¶¯ µÄÔªËØ¸öÊýΪ£¨ £©¡£ A£®8 B£®63.5 C£®63 D£®7 ´ð°¸£ºB ½âÊÍ£ºÆ½¾ùÒªÒÆ¶¯µÄÔªËØ¸öÊýΪ£ºn/2¡£ £¨4£©Á´½Ó´æ´¢µÄ´æ´¢½á¹¹ËùÕ¼´æ´¢¿Õ¼ä£¨ £©¡£ A£®·ÖÁ½²¿·Ö£¬Ò»²¿·Ö´æ·Å½áµãÖµ£¬ÁíÒ»²¿·Ö´æ·Å±íʾ½áµã¼ä¹ØÏµµÄÖ¸Õë B£®Ö»ÓÐÒ»²¿·Ö£¬´æ·Å½áµãÖµ C£®Ö»ÓÐÒ»²¿·Ö£¬´æ´¢±íʾ½áµã¼ä¹ØÏµµÄÖ¸Õë D£®·ÖÁ½²¿·Ö£¬Ò»²¿·Ö´æ·Å½áµãÖµ£¬ÁíÒ»²¿·Ö´æ·Å½áµãËùÕ¼µ¥ÔªÊý ´ð°¸£ºA £¨5£©ÏßÐÔ±íÈô²ÉÓÃÁ´Ê½´æ´¢½á¹¹Ê±£¬ÒªÇóÄÚ´æÖпÉÓô洢µ¥ÔªµÄµØÖ·£¨ £©¡£ A£®±ØÐëÊÇÁ¬ÐøµÄ B£®²¿·ÖµØÖ·±ØÐëÊÇÁ¬ÐøµÄ C£®Ò»¶¨ÊDz»Á¬ÐøµÄ D£®Á¬Ðø»ò²»Á¬Ðø¶¼¿ÉÒÔ ´ð°¸£ºD £¨6£©ÏßÐÔ±í£ÌÔÚ£¨ £©Çé¿öÏÂÊÊÓÃÓÚʹÓÃÁ´Ê½½á¹¹ÊµÏÖ¡£ A£®Ðè¾³£Ð޸ģÌÖеĽáµãÖµ £Â£®Ðè²»¶Ï¶Ô£Ì½øÐÐɾ³ý²åÈë C£®£ÌÖк¬ÓдóÁ¿µÄ½áµã £Ä£®£ÌÖнáµã½á¹¹¸´ÔÓ ´ð°¸£ºB 5 ½âÊÍ£ºÁ´±í×î´óµÄÓŵãÔÚÓÚ²åÈëºÍɾ³ýʱ²»ÐèÒªÒÆ¶¯Êý¾Ý£¬Ö±½ÓÐÞ¸ÄÖ¸Õë¼´¿É¡£ £¨7£©µ¥Á´±íµÄ´æ´¢Ãܶȣ¨ £©¡£ A£®´óÓÚ1 B£®µÈÓÚ1 C£®Ð¡ÓÚ1 D£®²»ÄÜÈ·¶¨ ´ð°¸£ºC ½âÊÍ£º´æ´¢ÃܶÈÊÇÖ¸Ò»¸ö½áµãÊý¾Ý±¾ÉíËùÕ¼µÄ´æ´¢¿Õ¼äºÍÕû¸ö½áµãËùÕ¼µÄ´æ´¢¿Õ ¼äÖ®±È£¬¼ÙÉèµ¥Á´±íÒ»¸ö½áµã±¾ÉíËùÕ¼µÄ¿Õ¼äΪD£¬Ö¸ÕëÓòËùÕ¼µÄ¿Õ¼äΪN£¬Ôò´æ´¢ÃܶÈΪ£ºD/(D+N)£¬Ò»¶¨Ð¡ÓÚ1¡£ £¨8£©½«Á½¸ö¸÷ÓÐn¸öÔªËØµÄÓÐÐò±í¹é²¢³ÉÒ»¸öÓÐÐò±í£¬Æä×îÉٵıȽϴÎÊýÊÇ£¨ £©¡£ A£®n B£®2n-1 C£®2n D£®n-1 ´ð°¸£ºA ½âÊÍ£ºµ±µÚÒ»¸öÓÐÐò±íÖÐËùÓеÄÔªËØ¶¼Ð¡ÓÚ£¨»ò´óÓÚ£©µÚ¶þ¸ö±íÖеÄÔªËØ£¬Ö»Ðè ÒªÓõڶþ¸ö±íÖеĵÚÒ»¸öÔªËØÒÀ´ÎÓëµÚÒ»¸ö±íµÄÔªËØ±È½Ï£¬×ܼƱȽÏn´Î¡£ £¨9£©ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò±íÖУ¬ÔÚµÚi¸öÔªËØ£¨1¡Üi¡Ün+1£©Ö®Ç°²åÈëÒ»¸öÐÂÔªËØÊ±ÐëÏòºóÒÆ¶¯£¨ £©¸öÔªËØ¡£ A£®n-i B£®n-i+1 C£®n-i-1 D£®I ´ð°¸£ºB (10) ÏßÐÔ±íL=(a1£¬a2,??an)£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©¡£ A£®Ã¿¸öÔªËØ¶¼ÓÐÒ»¸öÖ±½ÓǰÇýºÍÒ»¸öÖ±½Óºó¼Ì B£®ÏßÐÔ±íÖÐÖÁÉÙÓÐÒ»¸öÔªËØ C£®±íÖÐÖîÔªËØµÄÅÅÁбØÐëÊÇÓÉСµ½´ó»òÓÉ´óµ½Ð¡ D£®³ýµÚÒ»¸öºÍ×îºóÒ»¸öÔªËØÍ⣬ÆäÓàÿ¸öÔªËØ¶¼ÓÐÒ»¸öÇÒ½öÓÐÒ»¸öÖ±½ÓǰÇýºÍÖ±½Ó ºó¼Ì¡£ ´ð°¸£ºD (11) ´´½¨Ò»¸ö°üÀ¨n¸ö½áµãµÄÓÐÐòµ¥Á´±íµÄʱ¼ä¸´ÔÓ¶ÈÊÇ£¨ £©¡£ A£®O(1) B£®O(n) C£®O(n2) D£®O(nlog2n) ´ð°¸£ºC ½âÊÍ£ºµ¥Á´±í´´½¨µÄʱ¼ä¸´ÔÓ¶ÈÊÇO(n)£¬¶øÒª½¨Á¢Ò»¸öÓÐÐòµÄµ¥Á´±í£¬ÔòÿÉú³É Ò»¸öнáµãʱÐèÒªºÍÒÑÓеĽáµã½øÐбȽϣ¬È·¶¨ºÏÊʵIJåÈëλÖã¬ËùÒÔʱ¼ä¸´ÔÓ¶ÈÊÇO(n2)¡£ (12) ÒÔÏÂ˵·¨´íÎóµÄÊÇ£¨ £©¡£ ¹¹Ê±ÊµÏÖµÄЧÂÊµÍ B£®Ë³Ðò´æ´¢µÄÏßÐÔ±í¿ÉÒÔËæ»ú´æÈ¡ C£®ÓÉÓÚ˳Ðò´æ´¢ÒªÇóÁ¬ÐøµÄ´æ´¢ÇøÓò£¬ËùÒÔÔÚ´æ´¢¹ÜÀíÉϲ»¹»Áé»î D£®ÏßÐÔ±íµÄÁ´Ê½´æ´¢½á¹¹ÓÅÓÚ˳Ðò´æ´¢½á¹¹ A£®Çó±í³¤¡¢¶¨Î»ÕâÁ½ÖÖÔËËãÔÚ²ÉÓÃ˳Ðò´æ´¢½á¹¹Ê±ÊµÏÖµÄЧÂʲ»±È²ÉÓÃÁ´Ê½´æ´¢½á ´ð°¸£ºD ½âÊÍ£ºÁ´Ê½´æ´¢½á¹¹ºÍ˳Ðò´æ´¢½á¹¹¸÷ÓÐÓÅȱµã£¬Óв»Í¬µÄÊÊÓó¡ºÏ¡£ (13) ÔÚµ¥Á´±íÖУ¬Òª½«sËùÖ¸½áµã²åÈëµ½pËùÖ¸½áµãÖ®ºó£¬ÆäÓï¾äӦΪ£¨ £©¡£ 6 A£®s->next=p+1; p->next=s; B£®(*p).next=s; (*s).next=(*p).next; C£®s->next=p->next; p->next=s->next; D£®s->next=p->next; p->next=s; ´ð°¸£ºD (14) ÔÚË«ÏòÁ´±í´æ´¢½á¹¹ÖУ¬É¾³ýpËùÖ¸µÄ½áµãʱÐëÐÞ¸ÄÖ¸Õ루 £©¡£ A£®p->next->prior=p->prior; p->prior->next=p->next; B£®p->next=p->next->next; p->next->prior=p; C£®p->prior->next=p; p->prior=p->prior->prior; D£®p->prior=p->next->next; p->next=p->prior->prior; ´ð°¸£ºA (15) ÔÚË«ÏòÑ»·Á´±íÖУ¬ÔÚpÖ¸ÕëËùÖ¸µÄ½áµãºó²åÈëqËùÖ¸ÏòµÄнáµã£¬ÆäÐÞ¸ÄÖ¸ÕëµÄ²Ù×÷ÊÇ£¨ £©¡£ A£®p->next=q; q->prior=p; p->next->prior=q; q->next=q; B£®p->next=q; p->next->prior=q; q->prior=p; q->next=p->next; C£®q->prior=p; q->next=p->next; p->next->prior=q; p->next=q; D£®q->prior=p; q->next=p->next; p->next=q; p->next->prior=q; ´ð°¸£ºC 2£®Ëã·¨Éè¼ÆÌâ £¨1£©½«Á½¸öµÝÔöµÄÓÐÐòÁ´±íºÏ²¢ÎªÒ»¸öµÝÔöµÄÓÐÐòÁ´±í¡£ÒªÇó½á¹ûÁ´±íÈÔʹÓÃÔÀ´Á½¸öÁ´±íµÄ´æ´¢¿Õ¼ä, ²»ÁíÍâÕ¼ÓÃÆäËüµÄ´æ´¢¿Õ¼ä¡£±íÖв»ÔÊÐíÓÐÖØ¸´µÄÊý¾Ý¡£ [ÌâÄ¿·ÖÎö] ºÏ²¢ºóµÄбíʹÓÃÍ·Ö¸ÕëLcÖ¸Ïò£¬paºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã£¬´ÓµÚÒ»¸ö½áµã¿ªÊ¼½øÐбȽϣ¬µ±Á½¸öÁ´±íLaºÍLb¾ùΪµ½´ï±íβ½áµãʱ£¬ÒÀ´ÎժȡÆäÖнÏСÕßÖØÐÂÁ´½ÓÔÚLc±íµÄ×îºó¡£Èç¹ûÁ½¸ö±íÖеÄÔªËØÏàµÈ£¬Ö»ÕªÈ¡La±íÖеÄÔªËØ£¬É¾³ýLb±íÖеÄÔªËØ£¬ÕâÑùÈ·±£ºÏ²¢ºó±íÖÐÎÞÖØ¸´µÄÔªËØ¡£µ±Ò»¸ö±íµ½´ï±íβ½áµã£¬Îª¿Õʱ£¬½«·Ç¿Õ±íµÄÊ£ÓàÔªËØÖ±½ÓÁ´½ÓÔÚLc±íµÄ×îºó¡£ [Ëã·¨ÃèÊö] void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc) {//ºÏ²¢Á´±íLaºÍLb£¬ºÏ²¢ºóµÄбíʹÓÃÍ·Ö¸ÕëLcÖ¸Ïò pa=La->next; pb=Lb->next; //paºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã Lc=pc=La; //ÓÃLaµÄÍ·½áµã×÷ΪLcµÄÍ·½áµã while(pa && pb) {if(pa->data 7 else //ÏàµÈʱȡLaÖеÄÔªËØ£¬É¾³ýLbÖеÄÔªËØ {pc->next=pa;pc=pa;pa=pa->next; q=pb->next;delete pb ;pb =q; } } pc->next=pa?pa:pb; //²åÈëÊ£Óà¶Î delete Lb; //ÊÍ·ÅLbµÄÍ·½áµã } £¨2£©½«Á½¸ö·ÇµÝ¼õµÄÓÐÐòÁ´±íºÏ²¢ÎªÒ»¸ö·ÇµÝÔöµÄÓÐÐòÁ´±í¡£ÒªÇó½á¹ûÁ´±íÈÔʹÓÃÔÀ´Á½¸öÁ´±íµÄ´æ´¢¿Õ¼ä, ²»ÁíÍâÕ¼ÓÃÆäËüµÄ´æ´¢¿Õ¼ä¡£±íÖÐÔÊÐíÓÐÖØ¸´µÄÊý¾Ý¡£ [ÌâÄ¿·ÖÎö] ºÏ²¢ºóµÄбíʹÓÃÍ·Ö¸ÕëLcÖ¸Ïò£¬paºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã£¬´ÓµÚÒ»¸ö½áµã¿ªÊ¼½øÐбȽϣ¬µ±Á½¸öÁ´±íLaºÍLb¾ùΪµ½´ï±íβ½áµãʱ£¬ÒÀ´ÎժȡÆäÖнÏСÕßÖØÐÂÁ´½ÓÔÚLc±íµÄ±íÍ·½áµãÖ®ºó£¬Èç¹ûÁ½¸ö±íÖеÄÔªËØÏàµÈ£¬Ö»ÕªÈ¡La±íÖеÄÔªËØ£¬±£ÁôLb±íÖеÄÔªËØ¡£µ±Ò»¸ö±íµ½´ï±íβ½áµã£¬Îª¿Õʱ£¬½«·Ç¿Õ±íµÄÊ£ÓàÔªËØÒÀ´Îժȡ£¬Á´½ÓÔÚLc±íµÄ±íÍ·½áµãÖ®ºó¡£ [Ëã·¨ÃèÊö] void MergeList(LinkList& La, LinkList& Lb, LinkList& Lc, ) {//ºÏ²¢Á´±íLaºÍLb£¬ºÏ²¢ºóµÄбíʹÓÃÍ·Ö¸ÕëLcÖ¸Ïò pa=La->next; pb=Lb->next; //paºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã Lc=pc=La; //ÓÃLaµÄÍ·½áµã×÷ΪLcµÄÍ·½áµã Lc->next=NULL; while(pa||pb ) {//Ö»Òª´æÔÚÒ»¸ö·Ç¿Õ±í£¬ÓÃqÖ¸Ïò´ýժȡµÄÔªËØ if(!pa) {q=pb; pb=pb->next;} //La±íΪ¿Õ£¬ÓÃqÖ¸Ïòpb£¬pbÖ¸ÕëºóÒÆ else if(!pb) {q=pa; pa=pa->next;} //Lb±íΪ¿Õ£¬ÓÃqÖ¸Ïòpa£¬paÖ¸ÕëºóÒÆ else if(pa->data<=pb->data) {q=pa; pa=pa->next;} //È¡½ÏСÕߣ¨°üÀ¨ÏàµÈ£©LaÖеÄÔªËØ£¬ÓÃqÖ¸Ïòpa£¬paÖ¸ÕëºóÒÆ else {q=pb; pb=pb->next;} //È¡½ÏСÕßLbÖеÄÔªËØ£¬ÓÃqÖ¸Ïòpb£¬pbÖ¸ÕëºóÒÆ q->next = Lc->next; Lc->next = q; //½«qÖ¸ÏòµÄ½áµã²åÔÚLc ±íµÄ±íÍ·½áµãÖ®ºó } delete Lb; //ÊÍ·ÅLbµÄÍ·½áµã } 8 £¨3£©ÒÑÖªÁ½¸öÁ´±íAºÍB·Ö±ð±íʾÁ½¸ö¼¯ºÏ£¬ÆäÔªËØµÝÔöÅÅÁС£ÇëÉè¼ÆËã·¨Çó³öAÓëBµÄ½»¼¯£¬²¢´æ·ÅÓÚAÁ´±íÖС£ [ÌâÄ¿·ÖÎö] Ö»ÓÐͬʱ³öÏÖÔÚÁ½¼¯ºÏÖеÄÔªËØ²Å³öÏÖÔÚ½á¹û±íÖÐ,ºÏ²¢ºóµÄбíʹÓÃÍ·Ö¸ÕëLcÖ¸Ïò¡£paºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã£¬´ÓµÚÒ»¸ö½áµã¿ªÊ¼½øÐбȽϣ¬µ±Á½¸öÁ´±íLaºÍLb¾ùΪµ½´ï±íβ½áµãʱ£¬Èç¹ûÁ½¸ö±íÖÐÏàµÈµÄÔªËØÊ±£¬ÕªÈ¡La±íÖеÄÔªËØ£¬É¾³ýLb±íÖеÄÔªËØ£»Èç¹ûÆäÖÐÒ»¸ö±íÖеÄÔªËØ½ÏСʱ£¬É¾³ý´Ë±íÖнÏСµÄÔªËØ£¬´Ë±íµÄ¹¤×÷Ö¸ÕëºóÒÆ¡£µ±Á´±íLaºÍLbÓÐÒ»¸öµ½´ï±íβ½áµã£¬Îª¿Õʱ£¬ÒÀ´Îɾ³ýÁíÒ»¸ö·Ç¿Õ±íÖеÄËùÓÐÔªËØ¡£ [Ëã·¨ÃèÊö] void Mix(LinkList& La, LinkList& Lb, LinkList& Lc) { pa=La->next;pb=Lb->next; paºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã Lc=pc=La; //ÓÃLaµÄÍ·½áµã×÷ΪLcµÄÍ·½áµã while(pa&&pb) { if(pa->data==pb->data)¡Î½»¼¯²¢Èë½á¹û±íÖС£ { pc->next=pa;pc=pa;pa=pa->next; u=pb;pb=pb->next; delete u;} else if(pa->data while(pa) {u=pa; pa=pa->next; delete u;}¡Î ÊͷŽáµã¿Õ¼ä while(pb) {u=pb; pb=pb->next; delete u;}¡ÎÊͷŽáµã¿Õ¼ä pc->next=null;¡ÎÖÃÁ´±íβ±ê¼Ç¡£ delete Lb; //ÊÍ·ÅLbµÄÍ·½áµã } £¨4£©ÒÑÖªÁ½¸öÁ´±íAºÍB·Ö±ð±íʾÁ½¸ö¼¯ºÏ£¬ÆäÔªËØµÝÔöÅÅÁС£ÇëÉè¼ÆËã·¨Çó³öÁ½¸ö¼¯ºÏAºÍB µÄ²î¼¯£¨¼´½öÓÉÔÚAÖгöÏÖ¶ø²»ÔÚBÖгöÏÖµÄÔªËØËù¹¹³ÉµÄ¼¯ºÏ£©£¬²¢ÒÔͬÑùµÄÐÎʽ´æ´¢£¬Í¬Ê±·µ»Ø¸Ã¼¯ºÏµÄÔªËØ¸öÊý¡£ [ÌâÄ¿·ÖÎö] ÇóÁ½¸ö¼¯ºÏAºÍBµÄ²î¼¯ÊÇÖ¸ÔÚAÖÐɾ³ýAºÍBÖй²ÓеÄÔªËØ£¬¼´É¾³ýÁ´±íÖеÄÏàÓ¦½áµã,ËùÒÔÒª±£´æ´ýɾ³ý½áµãµÄǰÇý£¬Ê¹ÓÃÖ¸ÕëpreÖ¸ÏòǰÇý½áµã¡£paºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã£¬´ÓµÚÒ»¸ö½áµã¿ªÊ¼½øÐбȽϣ¬µ±Á½¸öÁ´±íLaºÍLb¾ùΪµ½´ï±íβ½áµãʱ£¬Èç¹ûLa±íÖеÄÔªËØÐ¡ÓÚLb±íÖеÄÔªËØ£¬preÖÃΪLa±íµÄ¹¤×÷Ö¸Õëpaɾ³ýLb±íÖеÄÔªËØ£»Èç¹ûÆäÖÐÒ»¸ö±íÖеÄÔªËØ½ÏСʱ£¬É¾³ý´Ë±íÖнÏСµÄÔªËØ£¬´Ë±íµÄ¹¤×÷Ö¸ÕëºóÒÆ¡£µ±Á´±íLaºÍLbÓÐÒ»¸öΪ¿Õʱ£¬ÒÀ´Îɾ³ýÁíÒ»¸ö·Ç¿Õ±íÖеÄËùÓÐÔªËØ¡£ [Ëã·¨ÃèÊö] 9 void Difference£¨LinkList& La, LinkList& Lb,int *n£© {¡Î²î¼¯µÄ½á¹û´æ´¢ÓÚµ¥Á´±íLaÖУ¬*nÊǽá¹û¼¯ºÏÖÐÔªËØ¸öÊý£¬µ÷ÓÃʱΪ0 pa=La->next; pb=Lb->next; ¡ÎpaºÍpb·Ö±ðÊÇÁ´±íLaºÍLbµÄ¹¤×÷Ö¸Õë,³õʼ»¯ÎªÏàÓ¦Á´±íµÄµÚÒ»¸ö½áµã pre=La; ¡ÎpreΪLaÖÐpaËùÖ¸½áµãµÄǰÇý½áµãµÄÖ¸Õë while£¨pa&&pb£© {if£¨pa->data else if£¨pa->data>q->data£©q=q->next; ¡ÎBÁ´±íÖе±Ç°½áµãÖ¸ÕëºóÒÆ else {pre->next=pa->next; ¡Î´¦ÀíA£¬BÖÐÔªËØÖµÏàͬµÄ½áµã£¬Ó¦É¾³ý u=pa; pa=pa->next; delete u;} ¡Îɾ³ý½áµã } } £¨5£©Éè¼ÆËã·¨½«Ò»¸ö´øÍ·½áµãµÄµ¥Á´±íA·Ö½âΪÁ½¸ö¾ßÓÐÏàͬ½á¹¹µÄÁ´±íB¡¢C£¬ÆäÖÐB±íµÄ½áµãΪA±íÖÐֵСÓÚÁãµÄ½áµã£¬¶øC±íµÄ½áµãΪA±íÖÐÖµ´óÓÚÁãµÄ½áµã£¨Á´±íAÖеÄÔªËØÎª·ÇÁãÕûÊý£¬ÒªÇóB¡¢C±íÀûÓÃA±íµÄ½áµã£©¡£ [ÌâÄ¿·ÖÎö] B±íµÄÍ·½áµãʹÓÃÔÀ´A±íµÄÍ·½áµã£¬ÎªC±íÐÂÉêÇëÒ»¸öÍ·½áµã¡£´ÓA±íµÄµÚÒ»¸ö½áµã¿ªÊ¼£¬ÒÀ´ÎÈ¡Æäÿ¸ö½áµãp£¬ÅжϽáµãpµÄÖµÊÇ·ñСÓÚ0£¬ÀûÓÃǰ²å·¨£¬½«Ð¡ÓÚ0µÄ½áµã²åÈëB±í,´óÓÚµÈÓÚ0µÄ½áµã²åÈëC±í¡£ [Ëã·¨ÃèÊö] void DisCompose(LinkedList A) { B=A; B->next= NULL; ¡ÎB±í³õʼ»¯ C=new LNode;¡ÎΪCÉêÇë½áµã¿Õ¼ä C->next=NULL; ¡ÎC³õʼ»¯Îª¿Õ±í p=A->next; ¡ÎpΪ¹¤×÷Ö¸Õë while(p!= NULL) { r=p->next; ¡ÎÔÝ´æpµÄºó¼Ì if(p->data<0) {p->next=B->next; B->next=p; }¡Î½«Ð¡ÓÚ0µÄ½áµãÁ´ÈëB±í,ǰ²å·¨ else {p->next=C->next; C->next=p; }¡Î½«´óÓÚµÈÓÚ0µÄ½áµãÁ´ÈëC±í,ǰ²å·¨ p=r;¡ÎpÖ¸ÏòеĴý´¦Àí½áµã¡£ } } £¨6£©Éè¼ÆÒ»¸öËã·¨£¬Í¨¹ýÒ»Ì˱éÀúÔÚµ¥Á´±íÖÐÈ·¶¨Öµ×î´óµÄ½áµã¡£ [ÌâÄ¿·ÖÎö] 10 ¼Ù¶¨µÚÒ»¸ö½áµãÖÐÊý¾Ý¾ßÓÐ×î´óÖµ£¬ÒÀ´ÎÓëÏÂÒ»¸öÔªËØ±È½Ï£¬ÈôÆäСÓÚÏÂÒ»¸öÔªËØ£¬ÔòÉèÆäÏÂÒ»¸öÔªËØÎª×î´óÖµ£¬·´¸´½øÐбȽϣ¬Ö±µ½±éÀúÍê¸ÃÁ´±í¡£ [Ëã·¨ÃèÊö] ElemType Max (LinkList L ){ if(L->next==NULL) return NULL; pmax=L->next; //¼Ù¶¨µÚÒ»¸ö½áµãÖÐÊý¾Ý¾ßÓÐ×î´óÖµ p=L->next->next; while(p != NULL ){//Èç¹ûÏÂÒ»¸ö½áµã´æÔÚ } return pmax->data; if(p->data > pmax->data) pmax=p;//Èç¹ûpµÄÖµ´óÓÚpmaxµÄÖµ£¬ÔòÖØÐ¸³Öµ p=p->next;//±éÀúÁ´±í £¨7£©Éè¼ÆÒ»¸öËã·¨£¬Í¨¹ý±éÀúÒ»ÌË£¬½«Á´±íÖÐËùÓнáµãµÄÁ´½Ó·½ÏòÄæ×ª£¬ÈÔÀûÓÃÔ±íµÄ´æ´¢¿Õ¼ä¡£ [ÌâÄ¿·ÖÎö] ´ÓÊ×Ôª½áµã¿ªÊ¼£¬Öð¸öµØ°ÑÁ´±íLµÄµ±Ç°½áµãp²åÈëеÄÁ´±íÍ·²¿¡£ [Ëã·¨ÃèÊö] void inverse(LinkList &L) {// ÄæÖôøÍ·½áµãµÄµ¥Á´±í L p=L->next; L->next=NULL; while ( p) { q=p->next; // qÖ¸Ïò*pµÄºó¼Ì p->next=L->next; L->next=p; // *p²åÈëÔÚÍ·½áµãÖ®ºó p = q; } } £¨8£©Éè¼ÆÒ»¸öËã·¨£¬É¾³ýµÝÔöÓÐÐòÁ´±íÖÐÖµ´óÓÚminkÇÒСÓÚmaxkµÄËùÓÐÔªËØ£¨minkºÍmaxkÊǸø¶¨µÄÁ½¸ö²ÎÊý£¬ÆäÖµ¿ÉÒԺͱíÖеÄÔªËØÏàͬ£¬Ò²¿ÉÒÔ²»Í¬ £©¡£ [ÌâÄ¿·ÖÎö] ·Ö±ð²éÕÒµÚÒ»¸öÖµ>minkµÄ½áµãºÍµÚÒ»¸öÖµ ¡ÝmaxkµÄ½áµã£¬ÔÙÐÞ¸ÄÖ¸Õ룬ɾ³ýÖµ´óÓÚminkÇÒСÓÚmaxkµÄËùÓÐÔªËØ¡£ [Ëã·¨ÃèÊö] void delete(LinkList &L, int mink, int maxk) { p=L->next; //Ê×Ôª½áµã while (p && p->data<=mink) { pre=p; p=p->next; } //²éÕÒµÚÒ»¸öÖµ>minkµÄ½áµã if (p) 11 {while (p && p->data // ²éÕÒµÚÒ»¸öÖµ ¡ÝmaxkµÄ½áµã q=pre->next; pre->next=p; // ÐÞ¸ÄÖ¸Õë while (q!=p) { s=q->next; delete q; q=s; } // ÊͷŽáµã¿Õ¼ä }//if } £¨9£©ÒÑÖªpÖ¸ÏòË«ÏòÑ»·Á´±íÖеÄÒ»¸ö½áµã£¬Æä½áµã½á¹¹Îªdata¡¢prior¡¢nextÈý¸öÓò£¬Ð´³öËã·¨change(p),½»»»pËùÖ¸ÏòµÄ½áµãºÍËüµÄǰ׺½áµãµÄ˳Ðò¡£ [ÌâÄ¿·ÖÎö] ÖªµÀË«ÏòÑ»·Á´±íÖеÄÒ»¸ö½áµã£¬ÓëǰÇý½»»»Éæ¼°µ½Ëĸö½áµã£¨p½áµã£¬Ç°Çý½áµã£¬Ç°ÇýµÄǰÇý½áµã£¬ºó¼Ì½áµã£©ÁùÌõÁ´¡£ [Ëã·¨ÃèÊö] void Exchange£¨LinkedList p£© ¡ÎpÊÇË«ÏòÑ»·Á´±íÖеÄÒ»¸ö½áµã£¬±¾Ëã·¨½«pËùÖ¸½áµãÓëÆäǰÇý½áµã½»»»¡£ {q=p->llink£» q->llink->rlink=p£» ¡ÎpµÄǰÇýµÄǰÇýÖ®ºó¼ÌΪp p->llink=q->llink£» ¡ÎpµÄǰÇýÖ¸ÏòÆäǰÇýµÄǰÇý¡£ q->rlink=p->rlink£» ¡ÎpµÄǰÇýµÄºó¼ÌΪpµÄºó¼Ì¡£ q->llink=p£» ¡ÎpÓëÆäǰÇý½»»» p->rlink->llink=q£» ¡ÎpµÄºó¼ÌµÄǰÇýÖ¸ÏòÔpµÄǰÇý p->rlink=q£» ¡ÎpµÄºó¼ÌÖ¸ÏòÆäÔÀ´µÄǰÇý }¡ÎËã·¨exchange½áÊø¡£ £¨10£©ÒÑÖª³¤¶ÈΪnµÄÏßÐÔ±íA²ÉÓÃ˳Ðò´æ´¢½á¹¹£¬Çëдһʱ¼ä¸´ÔÓ¶ÈΪO(n)¡¢¿Õ¼ä¸´ÔÓ¶ÈΪO(1)µÄËã·¨£¬¸ÃË㷨ɾ³ýÏßÐÔ±íÖÐËùÓÐֵΪitemµÄÊý¾ÝÔªËØ¡£ [ÌâÄ¿·ÖÎö] ÔÚ˳Ðò´æ´¢µÄÏßÐÔ±íÉÏɾ³ýÔªËØ£¬Í¨³£ÒªÉæ¼°µ½Ò»ÏµÁÐÔªËØµÄÒÆ¶¯£¨É¾µÚi¸öÔªËØ£¬µÚi+1ÖÁµÚn¸öÔªËØÒªÒÀ´ÎÇ°ÒÆ£©¡£±¾ÌâÒªÇóɾ³ýÏßÐÔ±íÖÐËùÓÐֵΪitemµÄÊý¾ÝÔªËØ£¬²¢Î´ÒªÇóÔªËØ¼äµÄÏà¶ÔλÖò»±ä¡£Òò´Ë¿ÉÒÔ¿¼ÂÇÉèͷβÁ½¸öÖ¸Õ루i=1£¬j=n£©£¬´ÓÁ½¶ËÏòÖмäÒÆ¶¯£¬·²Óöµ½ÖµitemµÄÊý¾ÝÔªËØÊ±£¬Ö±½Ó½«ÓÒ¶ËÔªËØ×óÒÆÖÁֵΪitemµÄÊý¾ÝÔªËØÎ»Öᣠ[Ëã·¨ÃèÊö] void Delete£¨ElemType A[ ]£¬int n£© ¡ÎAÊÇÓÐn¸öÔªËØµÄһάÊý×飬±¾Ë㷨ɾ³ýAÖÐËùÓÐֵΪitemµÄÔªËØ¡£ {i=1£»j=n£»¡ÎÉèÖÃÊý×éµÍ¡¢¸ß¶ËÖ¸Õ루ϱ꣩¡£ while£¨i {while£¨i 12 µÚ3Õ ջºÍ¶ÓÁÐ 1£®Ñ¡ÔñÌâ £¨1£©ÈôÈÃÔªËØ1£¬2£¬3£¬4£¬5ÒÀ´Î½øÕ»£¬Ôò³öÕ»´ÎÐò²»¿ÉÄܳöÏÖÔÚ£¨ £©ÖÖÇé¿ö¡£ A£®5£¬4£¬3£¬2£¬1 B£®2£¬1£¬5£¬4£¬3 C£®4£¬3£¬1£¬2£¬5 D£®2£¬3£¬5£¬4£¬1 ´ð°¸£ºC ½âÊÍ£ºÕ»ÊǺó½øÏȳöµÄÏßÐÔ±í£¬²»ÄÑ·¢ÏÖCÑ¡ÏîÖÐÔªËØ1±ÈÔªËØ2ÏȳöÕ»£¬Î¥±³ÁËÕ» µÄºó½øÏȳöÔÔò£¬ËùÒÔ²»¿ÉÄܳöÏÖCÑ¡ÏîËùʾµÄÇé¿ö¡£ £¨2£©ÈôÒÑÖªÒ»¸öÕ»µÄÈëÕ»ÐòÁÐÊÇ1£¬2£¬3£¬?£¬n£¬ÆäÊä³öÐòÁÐΪp1£¬p2£¬p3£¬?£¬pn£¬Èôp1=n£¬ÔòpiΪ£¨ £©¡£ A£®i B£®n-i C£®n-i+1 D£®²»È·¶¨ ´ð°¸£ºC ½âÊÍ£ºÕ»ÊǺó½øÏȳöµÄÏßÐÔ±í£¬Ò»¸öÕ»µÄÈëÕ»ÐòÁÐÊÇ1£¬2£¬3£¬?£¬n£¬¶øÊä³öÐòÁÐµÄ µÚÒ»¸öÔªËØÎªn£¬ËµÃ÷1£¬2£¬3£¬?£¬nÒ»´ÎÐÔÈ«²¿½øÕ»£¬ÔÙ½øÐÐÊä³ö£¬ËùÒÔp1=n£¬p2=n-1£¬?£¬pi=n-i+1¡£ £¨3£©Êý×é£Ñ£Û£î£ÝÓÃÀ´±íʾһ¸öÑ»·¶ÓÁУ¬£æÎªµ±Ç°¶ÓÁÐÍ·ÔªËØµÄǰһλÖ㬣òΪ¶ÓÎ²ÔªËØµÄλÖ㬼ٶ¨¶ÓÁÐÖÐÔªËØµÄ¸öÊýСÓڣ¼ÆËã¶ÓÁÐÖÐÔªËØ¸öÊýµÄ¹«Ê½Îª£¨ £©¡£ A£®r-f B£®(n+f-r)%n C£®n+r-f D£®£¨n+r-f)%n ´ð°¸£ºD ½âÊÍ£º¶ÔÓÚ·ÇÑ»·¶ÓÁУ¬Î²Ö¸ÕëºÍÍ·Ö¸ÕëµÄ²îÖµ±ãÊǶÓÁеij¤¶È£¬¶ø¶ÔÓÚÑ»·¶ÓÁУ¬ ²îÖµ¿ÉÄÜΪ¸ºÊý£¬ËùÒÔÐèÒª½«²îÖµ¼ÓÉÏMAXSIZE£¨±¾ÌâΪn£©£¬È»ºóÓëMAXSIZE£¨±¾ÌâΪn£©ÇóÓ࣬¼´£¨n+r-f)%n¡£ £¨4£©Á´Ê½Õ»½áµãΪ£º(data,link)£¬topÖ¸ÏòÕ»¶¥.ÈôÏëÕª³ýÕ»¶¥½áµã£¬²¢½«É¾³ý½áµãµÄÖµ±£´æµ½xÖÐ,ÔòÓ¦Ö´ÐвÙ×÷£¨ £©¡£ A£®x=top->data;top=top->link£» B£®top=top->link;x=top->link£» C£®x=top;top=top->link£» ´ð°¸£ºA ½âÊÍ£ºx=top->data½«½áµãµÄÖµ±£´æµ½xÖУ¬top=top->linkÕ»¶¥Ö¸ÕëÖ¸ÏòÕ»¶¥ÏÂÒ»½áµã£¬ ¼´Õª³ýÕ»¶¥½áµã¡£ £¨5£©ÉèÓÐÒ»¸öµÝ¹éËã·¨ÈçÏ int fact(int n) { //n´óÓÚµÈÓÚ0 if(n<=0) return 1; else return n*fact(n-1); } Ôò¼ÆËãfact(n)ÐèÒªµ÷Óøú¯ÊýµÄ´ÎÊýΪ£¨ £©¡£ A£® n+1 B£® n-1 C£® n D£® n+2 ´ð°¸£ºA 13 D£®x=top->link£» ½âÊÍ£ºÌØÊâÖµ·¨¡£Éèn=0£¬Ò×Öª½öµ÷ÓÃÒ»´Îfact(n)º¯Êý£¬¹ÊÑ¡A¡£ £¨6£©Õ»ÔÚ £¨ £©ÖÐÓÐËùÓ¦ÓᣠA£®µÝ¹éµ÷Óà B£®º¯Êýµ÷Óà C£®±í´ïʽÇóÖµ D£®Ç°Èý¸öÑ¡Ïî¶¼ÓÐ ´ð°¸£ºD ½âÊÍ£ºµÝ¹éµ÷Óᢺ¯Êýµ÷Óᢱí´ïʽÇóÖµ¾ùÓõ½ÁËÕ»µÄºó½øÏȳöÐÔÖÊ¡£ £¨7£©Îª½â¾ö¼ÆËã»úÖ÷»úÓë´òÓ¡»ú¼äËٶȲ»Æ¥ÅäÎÊÌ⣬ͨ³£ÉèÒ»¸ö´òÓ¡Êý¾Ý»º³åÇø¡£Ö÷»ú½«ÒªÊä³öµÄÊý¾ÝÒÀ´ÎдÈë¸Ã»º³åÇø£¬¶ø´òÓ¡»úÔòÒÀ´Î´Ó¸Ã»º³åÇøÖÐÈ¡³öÊý¾Ý¡£¸Ã»º³åÇøµÄÂß¼½á¹¹Ó¦¸ÃÊÇ£¨ £©¡£ A£®¶ÓÁÐ B£®Õ» C£® ÏßÐÔ±í D£®ÓÐÐò±í ´ð°¸£ºA ½âÊÍ£º½â¾ö»º³åÇøÎÊÌâÓ¦ÀûÓÃÒ»ÖÖÏȽøÏȳöµÄÏßÐÔ±í£¬¶ø¶ÓÁÐÕýÊÇÒ»ÖÖÏȽøÏȳöµÄÏß ÐÔ±í¡£ £¨8£©ÉèÕ»SºÍ¶ÓÁÐQµÄ³õʼ״̬Ϊ¿Õ£¬ÔªËØe1¡¢e2¡¢e3¡¢e4¡¢e5ºÍe6ÒÀ´Î½øÈëÕ»S£¬Ò»¸öÔªËØ³öÕ»ºó¼´½øÈëQ£¬Èô6¸öÔªËØ³ö¶ÓµÄÐòÁÐÊÇe2¡¢e4¡¢e3¡¢e6¡¢e5ºÍe1£¬ÔòÕ»SµÄÈÝÁ¿ÖÁÉÙÓ¦¸ÃÊÇ£¨ £©¡£ A£®2 B£®3 C£®4 D£® 6 ´ð°¸£ºB ½âÊÍ£ºÔªËسö¶ÓµÄÐòÁÐÊÇe2¡¢e4¡¢e3¡¢e6¡¢e5ºÍe1£¬¿ÉÖªÔªËØÈë¶ÓµÄÐòÁÐÊÇe2¡¢e4¡¢ e3¡¢e6¡¢e5ºÍe1£¬¼´ÔªËسöÕ»µÄÐòÁÐÒ²ÊÇe2¡¢e4¡¢e3¡¢e6¡¢e5ºÍe1£¬¶øÔªËØe1¡¢e2¡¢e3¡¢e4¡¢e5ºÍe6ÒÀ´Î½øÈëÕ»£¬Ò×ÖªÕ»SÖÐ×î¶àͬʱ´æÔÚ3¸öÔªËØ£¬¹ÊÕ»SµÄÈÝÁ¿ÖÁÉÙΪ3¡£ £¨9£©ÈôÒ»¸öÕ»ÒÔÏòÁ¿V[1..n]´æ´¢£¬³õʼջ¶¥Ö¸ÕëtopÉèΪn+1£¬ÔòÔªËØx½øÕ»µÄÕýÈ·²Ù×÷ÊÇ( )¡£ A£®top++; V[top]=x; C£®top--; V[top]=x; ´ð°¸£ºC ½âÊÍ£º³õʼջ¶¥Ö¸ÕëtopΪn+1£¬ËµÃ÷ÔªËØ´ÓÊý×éÏòÁ¿µÄ¸ß¶ËµØÖ·½øÕ»£¬ÓÖÒòÎªÔªËØ´æ´¢ÔÚÏòÁ¿¿Õ¼äV[1..n]ÖУ¬ËùÒÔ½øÕ»Ê±topÖ¸ÕëÏÈÏÂÒÆ±äΪn£¬Ö®ºó½«ÔªËØx´æ´¢ÔÚV[n]¡£ £¨10£©Éè¼ÆÒ»¸öÅбð±í´ïʽÖÐ×ó£¬ÓÒÀ¨ºÅÊÇ·ñÅä¶Ô³öÏÖµÄËã·¨£¬²ÉÓ㨠£©Êý¾Ý½á¹¹×î¼Ñ¡£ A£®ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹ B£®¶ÓÁÐ C. ÏßÐÔ±íµÄÁ´Ê½´æ´¢½á¹¹ D. Õ» ´ð°¸£ºD ½âÊÍ£ºÀûÓÃÕ»µÄºó½øÏȳöÔÔò¡£ £¨11£©ÓÃÁ´½Ó·½Ê½´æ´¢µÄ¶ÓÁУ¬ÔÚ½øÐÐɾ³ýÔËËãʱ£¨ £©¡£ A. ½öÐÞ¸ÄÍ·Ö¸Õë B. ½öÐÞ¸ÄβָÕë C. Í·¡¢Î²Ö¸Õë¶¼ÒªÐÞ¸Ä D. Í·¡¢Î²Ö¸Õë¿ÉÄܶ¼ÒªÐÞ¸Ä ´ð°¸£ºD B£®V[top]=x; top++; D£®V[top]=x; top--; 14 ½âÊÍ£ºÒ»°ãÇé¿öÏÂÖ»ÐÞ¸ÄÍ·Ö¸Õ룬µ«ÊÇ£¬µ±É¾³ýµÄÊǶÓÁÐÖÐ×îºóÒ»¸öÔªËØÊ±£¬¶Óβָ ÕëÒ²¶ªÊ§ÁË£¬Òò´ËÐè¶Ô¶ÓβָÕëÖØÐ¸³Öµ¡£ £¨12£©Ñ»·¶ÓÁд洢ÔÚÊý×éA[0..m]ÖУ¬ÔòÈë¶ÓʱµÄ²Ù×÷Ϊ£¨ £©¡£ A. rear=rear+1 B. rear=(rear+1)%(m-1) C. rear=(rear+1)%m D. rear=(rear+1)%(m+1) ´ð°¸£ºD ½âÊÍ£ºÊý×éA[0..m]Öй²º¬ÓÐm+1¸öÔªËØ£¬¹ÊÔÚÇóÄ£ÔËËãʱӦ³ýÒÔm+1¡£ £¨13£©×î´óÈÝÁ¿ÎªnµÄÑ»·¶ÓÁУ¬¶ÓβָÕëÊÇrear£¬¶ÓÍ·ÊÇfront£¬Ôò¶Ó¿ÕµÄÌõ¼þÊÇ£¨ £©¡£ A. (rear+1)%n==front B. rear==front C£®rear+1==front D. (rear-l)%n==front ´ð°¸£ºB ½âÊÍ£º×î´óÈÝÁ¿ÎªnµÄÑ»·¶ÓÁУ¬¶ÓÂúÌõ¼þÊÇ(rear+1)%n==front£¬¶Ó¿ÕÌõ¼þÊÇ rear==front¡£ £¨14£©Õ»ºÍ¶ÓÁеĹ²Í¬µãÊÇ£¨ £©¡£ A. ¶¼ÊÇÏȽøÏȳö B. ¶¼ÊÇÏȽøºó³ö C. Ö»ÔÊÐíÔڶ˵㴦²åÈëºÍɾ³ýÔªËØ D. ûÓй²Í¬µã ´ð°¸£ºC ½âÊÍ£ºÕ»Ö»ÔÊÐíÔÚÕ»¶¥´¦½øÐвåÈëºÍɾ³ýÔªËØ£¬¶ÓÁÐÖ»ÔÊÐíÔÚ¶Óβ²åÈëÔªËØºÍÔÚ¶ÓÍ· ɾ³ýÔªËØ¡£ £¨15£©Ò»¸öµÝ¹éËã·¨±ØÐë°üÀ¨£¨ £©¡£ A. µÝ¹é²¿·Ö B. ÖÕÖ¹Ìõ¼þºÍµÝ¹é²¿·Ö C. µü´ú²¿·Ö D. ÖÕÖ¹Ìõ¼þºÍµü´ú²¿·Ö ´ð°¸£ºB 2£®Ëã·¨Éè¼ÆÌâ £¨1£©½«±àºÅΪ0ºÍ1µÄÁ½¸öÕ»´æ·ÅÓÚÒ»¸öÊý×é¿Õ¼äV[m]ÖУ¬Õ»µ×·Ö±ð´¦ÓÚÊý×éµÄÁ½¶Ë¡£µ±µÚ0ºÅÕ»µÄÕ»¶¥Ö¸Õëtop[0]µÈÓÚ-1ʱ¸ÃջΪ¿Õ£¬µ±µÚ1ºÅÕ»µÄÕ»¶¥Ö¸Õëtop[1]µÈÓÚmʱ¸ÃջΪ¿Õ¡£Á½¸öÕ»¾ù´ÓÁ½¶ËÏòÖмäÔö³¤¡£ÊÔ±àд˫ջ³õʼ»¯£¬ÅжÏÕ»¿Õ¡¢Õ»Âú¡¢½øÕ»ºÍ³öÕ»µÈËã·¨µÄº¯Êý¡£Ë«Õ»Êý¾Ý½á¹¹µÄ¶¨ÒåÈçÏ£º Typedef struct {int top[2],bot[2]; SElemType *V; int m; }DblStack [ÌâÄ¿·ÖÎö] Á½Õ»¹²ÏíÏòÁ¿¿Õ¼ä£¬½«Á½Õ»Õ»µ×ÉèÔÚÏòÁ¿Á½¶Ë£¬³õʼʱ£¬×óÕ»¶¥Ö¸ÕëΪ-1£¬ÓÒÕ»¶¥Îªm¡£Á½Õ»¶¥Ö¸ÕëÏàÁÚʱΪջÂú¡£Á½Õ»¶¥ÏàÏò¡¢ÓÃæÔö³¤£¬Õ»¶¥Ö¸ÕëÖ¸ÏòÕ»¶¥ÔªËØ¡£ [Ëã·¨ÃèÊö] 15 //Õ»¶¥ºÍÕ»µ×Ö¸Õë //Õ»Êý×é //Õ»×î´ó¿ÉÈÝÄÉÔªËØ¸öÊý (1) Õ»³õʼ»¯ int Init() {S.top[0]=-1; S.top[1]=m; return 1; //³õʼ»¯³É¹¦ } (2) ÈëÕ»²Ù×÷£º int push(stk S ,int i,int x) ¡ÎiΪջºÅ£¬i=0±íʾ×óÕ»£¬i=1ΪÓÒÕ»£¬xÊÇÈëÕ»ÔªËØ¡£ÈëÕ»³É¹¦·µ»Ø1£¬Ê§°Ü·µ»Ø0 {if(i<0||i>1){ cout<<¡°Õ»ºÅÊäÈë²»¶Ô¡±< {case 0: S.V[++S.top[0]]=x; return(1); break; case 1: S.V[--S.top[1]]=x; return(1); } }¡Îpush (3) ÍËÕ»²Ù×÷ ElemType pop(stk S,int i) ¡ÎÍËÕ»¡£i´ú±íÕ»ºÅ£¬i=0ʱΪ×óÕ»£¬i=1ʱΪÓÒÕ»¡£ÍËÕ»³É¹¦Ê±·µ»ØÍËÕ»ÔªËØ ¡Î·ñÔò·µ»Ø-1 {if(i<0 || i>1){cout<<¡°Õ»ºÅÊäÈë´íÎó¡±< {case 0: if(S.top[0]==-1) {cout<<¡°Õ»¿Õ¡±< case 1: if(S.top[1]==m { cout<<¡°Õ»¿Õ¡±< {return (S.top[0]==-1 && S.top[1]==m); } [Ëã·¨ÌÖÂÛ] Çë×¢ÒâËã·¨ÖÐÁ½Õ»ÈëÕ»ºÍÍËջʱµÄÕ»¶¥Ö¸ÕëµÄ¼ÆËã¡£×óÕ»ÊÇͨ³£ÒâÒåϵÄÕ»£¬¶øÓÒÕ»ÈëÕ»²Ù×÷ʱ£¬ÆäÕ»¶¥Ö¸Õë×óÒÆ£¨¼õ1£©£¬ÍËջʱ£¬Õ»¶¥Ö¸ÕëÓÒÒÆ£¨¼Ó1£©¡£ £¨2£©»ØÎÄÊÇÖ¸Õý¶Á·´¶Á¾ùÏàͬµÄ×Ö·ûÐòÁУ¬Èç¡°abba¡±ºÍ¡°abdba¡±¾ùÊÇ»ØÎÄ£¬µ«¡°good¡±²»ÊÇ»ØÎÄ¡£ÊÔдһ¸öËã·¨Åж¨¸ø¶¨µÄ×Ö·ûÏòÁ¿ÊÇ·ñΪ»ØÎÄ¡£(Ìáʾ£º½«Ò»°ë×Ö·ûÈëÕ») 16 [ÌâÄ¿·ÖÎö] ½«×Ö·û´®Ç°Ò»°ëÈëÕ»£¬È»ºó£¬Õ»ÖÐÔªËØºÍ×Ö·û´®ºóÒ»°ë½øÐбȽϡ£¼´½«µÚÒ»¸ö³öÕ»ÔªËØºÍºóÒ»°ë´®ÖеÚÒ»¸ö×Ö·û±È½Ï£¬ÈôÏàµÈ£¬ÔòÔÙ³öÕ»Ò»¸öÔªËØÓëºóÒ»¸ö×Ö·û±È½Ï£¬??£¬Ö±ÖÁÕ»¿Õ£¬½áÂÛΪ×Ö·ûÐòÁÐÊÇ»ØÎÄ¡£ÔÚ³öÕ»ÔªËØÓë´®ÖÐ×Ö·û±È½Ï²»µÈʱ£¬½áÂÛ×Ö·ûÐòÁв»ÊÇ»ØÎÄ¡£ [Ëã·¨ÃèÊö] #define StackSize 100 //¼Ù¶¨Ô¤·ÖÅäµÄÕ»¿Õ¼ä×î¶àΪ100¸öÔªËØ typedef char DataType;//¼Ù¶¨Õ»ÔªËصÄÊý¾ÝÀàÐÍΪ×Ö·û typedef struct {DataType data[StackSize]; int top; }SeqStack; int IsHuiwen( char *t) {//ÅжÏt×Ö·ûÏòÁ¿ÊÇ·ñΪ»ØÎÄ£¬ÈôÊÇ£¬·µ»Ø1£¬·ñÔò·µ»Ø0 SeqStack s; int i , len; char temp; InitStack( &s); len=strlen(t); //ÇóÏòÁ¿³¤¶È for ( i=0; i Push( &s, t[i]); while( !EmptyStack( &s)) {// ÿµ¯³öÒ»¸ö×Ö·ûÓëÏàÓ¦×Ö·û±È½Ï temp=Pop (&s); if( temp!=S[i]) return 0 ;// ²»µÈÔò·µ»Ø0 else i++; } return 1 ; // ±È½ÏÍê±Ï¾ùÏàµÈÔò·µ»Ø 1 } £¨3£©Éè´Ó¼üÅÌÊäÈëÒ»ÕûÊýµÄÐòÁУºa1, a2, a3£¬¡£¬an£¬ÊÔ±àдË㷨ʵÏÖ£ºÓÃÕ»½á¹¹´æ´¢ÊäÈëµÄÕûÊý£¬µ±ai¡Ù-1ʱ£¬½«ai½øÕ»£»µ±ai=-1ʱ£¬Êä³öÕ»¶¥ÕûÊý²¢³öÕ»¡£Ëã·¨Ó¦¶ÔÒì³£Çé¿ö£¨ÈëÕ»ÂúµÈ£©¸ø³öÏàÓ¦µÄÐÅÏ¢¡£ [Ëã·¨ÃèÊö] #define maxsize Õ»¿Õ¼äÈÝÁ¿ void InOutS(int s[maxsize]) //sÊÇÔªËØÎªÕûÊýµÄÕ»£¬±¾Ëã·¨½øÐÐÈëÕ»ºÍÍËÕ»²Ù×÷¡£ {int top=0; //topΪջ¶¥Ö¸Õ룬¶¨Òåtop=0ʱΪջ¿Õ¡£ for(i=1; i<=n; i++) //n¸öÕûÊýÐòÁÐ×÷´¦Àí¡£ 17 {cin>>x); //´Ó¼üÅ̶ÁÈëÕûÊýÐòÁС£ if(x!=-1) // ¶ÁÈëµÄÕûÊý²»µÈÓÚ-1ʱÈëÕ»¡£ £ûif(top==maxsize-1){cout<<¡°Õ»Âú¡±< else s[++top]=x; //xÈëÕ»¡£ £ý else //¶ÁÈëµÄÕûÊýµÈÓÚ-1ʱÍËÕ»¡£ {if(top==0){ cout<<¡°Õ»¿Õ¡±< else cout<<¡°³öÕ»ÔªËØÊÇ¡±<< s[top--]< £¨4£©´Ó¼üÅÌÉÏÊäÈëÒ»¸öºó׺±í´ïʽ£¬ÊÔ±àдËã·¨¼ÆËã±í´ïʽµÄÖµ¡£¹æ¶¨£ºÄ沨À¼±í´ïʽµÄ³¤¶È²»³¬¹ýÒ»ÐУ¬ÒÔ$·û×÷ΪÊäÈë½áÊø£¬²Ù×÷ÊýÖ®¼äÓÿոñ·Ö¸ô,²Ù×÷·ûÖ»¿ÉÄÜÓÐ+¡¢-¡¢*¡¢/ËÄÖÖÔËËã¡£ÀýÈ磺234 34+2*$¡£ [ÌâÄ¿·ÖÎö] Äæ²¨À¼±í´ïʽ(¼´ºó׺±í´ïʽ)ÇóÖµ¹æÔòÈçÏ£ºÉèÁ¢ÔËËãÊýÕ»OPND,¶Ô±í´ïʽ´Ó×óµ½ÓÒɨÃè(¶ÁÈë)£¬µ±±í´ïʽÖÐɨÃèµ½Êýʱ£¬Ñ¹ÈëOPNDÕ»¡£µ±É¨Ãèµ½ÔËËã·ûʱ£¬´ÓOPNDÍ˳öÁ½¸öÊý£¬½øÐÐÏàÓ¦ÔËË㣬½á¹ûÔÙѹÈëOPNDÕ»¡£Õâ¸ö¹ý³ÌÒ»Ö±½øÐе½¶Á³ö±í´ïʽ½áÊø·û$£¬ÕâʱOPNDÕ»ÖÐÖ»ÓÐÒ»¸öÊý£¬¾ÍÊǽá¹û¡£ [Ëã·¨ÃèÊö] float expr( ) //´Ó¼üÅÌÊäÈëÄæ²¨À¼±í´ïʽ£¬ÒÔ¡®$¡¯±íʾÊäÈë½áÊø£¬±¾Ëã·¨ÇóÄæ²¨À¼Ê½±í´ïʽµÄÖµ¡£ £ûfloat OPND[30]; // OPNDÊDzÙ×÷ÊýÕ»¡£ init(OPND); //Á½Õ»³õʼ»¯¡£ float num=0.0; //Êý×Ö³õʼ»¯¡£ cin>>x;//xÊÇ×Ö·ûÐͱäÁ¿¡£ while(x!=¡¯$¡¯) {switch while((x>=¡¯0¡¯&&x<=¡¯9¡¯)||x==¡¯.¡¯) //Æ´Êý if(x!=¡¯.¡¯) //´¦ÀíÕûÊý {num=num*10+£¨ord(x)-ord(¡®0¡¯)£©; cin>>x;} else //´¦ÀíСÊý²¿·Ö¡£ {scale=10.0; cin>>x; while(x>=¡¯0¡¯&&x<=¡¯9¡¯) {num=num+(ord(x)-ord(¡®0¡¯)/scale; scale=scale*10; cin>>x; } }//else 18 {case¡®0¡¯<=x<=¡¯9¡¯: push(OPND,num); num=0.0;//ÊýѹÈëÕ»£¬Ï¸öÊý³õʼ»¯ case x=¡® ¡¯:break; //Óö¿Õ¸ñ£¬¼ÌÐø¶ÁÏÂÒ»¸ö×Ö·û¡£ case x=¡®+¡¯:push(OPND,pop(OPND)+pop(OPND));break; case x=¡®-¡¯:x1=pop(OPND);x2=pop(OPND);push(OPND,x2-x1);break; case x=¡®*¡¯:push(OPND,pop(OPND)*pop(OPND));break; case x=¡®/¡¯:x1=pop(OPND);x2=pop(OPND);push(OPND,x2/x1);break; default: //ÆäËü·ûºÅ²»×÷´¦Àí¡£ }//½áÊøswitch cin>>x;//¶ÁÈë±í´ïʽÖÐÏÂÒ»¸ö×Ö·û¡£ }//½áÊøwhile£¨x£¡=¡®$¡¯£© cout<<¡°ºó׺±í´ïʽµÄֵΪ¡±< [Ëã·¨ÌÖÂÛ]¼ÙÉèÊäÈëµÄºó׺±í´ïʽÊÇÕýÈ·µÄ£¬Î´×÷´íÎó¼ì²é¡£Ëã·¨ÖÐÆ´Êý²¿·ÖÊǺËÐÄ¡£ÈôÓöµ½´óÓÚµÈÓÚ¡®0¡¯ÇÒСÓÚµÈÓÚ¡®9¡¯µÄ×Ö·û£¬ÈÏΪÊÇÊý¡£ÕâÖÖ×Ö·ûµÄÐòºÅ¼õÈ¥×Ö·û¡®0¡¯µÄÐòºÅµÃ³öÊý¡£¶ÔÓÚÕûÊý£¬Ã¿¶ÁÈëÒ»¸öÊý×Ö×Ö·û£¬Ç°ÃæµÃµ½µÄ²¿·ÖÊýÒª³ËÉÏ10ÔÙ¼ÓжÁÈëµÄÊýµÃµ½ÐµIJ¿·ÖÊý¡£µ±¶Áµ½Ð¡Êýµã£¬ÈÏΪÊýµÄÕûÊý²¿·ÖÒÑÍ꣬Ҫ½Ó×Å´¦ÀíСÊý²¿·Ö¡£Ð¡Êý²¿·ÖµÄÊýÒª³ýÒÔ10£¨»ò10µÄÃÝÊý£©±ä³ÉÊ®·Ö룬°Ù·Öλ£¬Ç§·ÖλÊýµÈµÈ£¬ÓëÇ°Ãæ²¿·ÖÊýÏà¼Ó¡£ÔÚÆ´Êý¹ý³ÌÖУ¬ÈôÓö·ÇÊý×Ö×Ö·û£¬±íʾÊýÒÑÆ´Í꣬½«ÊýѹÈëÕ»ÖУ¬²¢ÇÒ½«±äÁ¿num»Ö¸´Îª0£¬×¼±¸ÏÂÒ»¸öÊý¡£Õâʱ¶ÔжÁÈëµÄ×Ö·û½øÈë¡®+¡¯¡¢¡®-¡¯¡¢¡®*¡¯¡¢¡®/¡¯¼°¿Õ¸ñµÄÅжϣ¬Òò´ËÔÚ½áÊø´¦ÀíÊý×Ö×Ö·ûµÄcaseºó£¬²»ÄܼÓÈëbreakÓï¾ä¡£ £¨5£©¼ÙÉèÒÔIºÍO·Ö±ð±íʾÈëÕ»ºÍ³öÕ»²Ù×÷¡£Õ»µÄ³õ̬ºÍÖÕ̬¾ùΪ¿Õ£¬ÈëÕ»ºÍ³öÕ»µÄ²Ù×÷ÐòÁпɱíʾΪ½öÓÉIºÍO×é³ÉµÄÐòÁУ¬³Æ¿ÉÒÔ²Ù×÷µÄÐòÁÐΪºÏ·¨ÐòÁУ¬·ñÔò³ÆÎª·Ç·¨ÐòÁС£ ¢ÙÏÂÃæËùʾµÄÐòÁÐÖÐÄÄЩÊǺϷ¨µÄ£¿ A. IOIIOIOO B. IOOIOIIO C. IIIOIOIO D. IIIOOIOO ¢Úͨ¹ý¶Ô¢ÙµÄ·ÖÎö£¬Ð´³öÒ»¸öËã·¨£¬Åж¨Ëù¸øµÄ²Ù×÷ÐòÁÐÊÇ·ñºÏ·¨¡£ÈôºÏ·¨£¬·µ»Øtrue£¬·ñÔò·µ»Øfalse£¨¼Ù¶¨±»Åж¨µÄ²Ù×÷ÐòÁÐÒÑ´æÈëһάÊý×éÖУ©¡£ ´ð°¸£º ¢ÙAºÍDÊǺϷ¨ÐòÁУ¬BºÍC ÊÇ·Ç·¨ÐòÁС£ ¢ÚÉè±»Åж¨µÄ²Ù×÷ÐòÁÐÒÑ´æÈëһάÊý×éAÖС£ int Judge(char A[]) //ÅжÏ×Ö·ûÊý×éAÖеÄÊäÈëÊä³öÐòÁÐÊÇ·ñÊǺϷ¨ÐòÁС£ÈçÊÇ£¬·µ»Øtrue£¬·ñÔò·µ»Ø false¡£ {i=0; //iΪϱꡣ j=k=0; //jºÍk·Ö±ðΪIºÍ×ÖĸOµÄµÄ¸öÊý¡£ while(A[i]!=¡®\\0¡¯) //µ±Î´µ½×Ö·ûÊý×éβ¾Í×÷¡£ {switch(A[i]) {case¡®I¡¯: j++; break; //ÈëÕ»´ÎÊýÔö1¡£ 19 case¡®O¡¯: k++; if(k>j){cout<<¡°ÐòÁзǷ¨¡±< i++; //²»ÂÛA[i]ÊÇ¡®I¡¯»ò¡®O¡¯£¬Ö¸Õëi¾ùºóÒÆ¡£} if(j!=k) {cout<<¡°ÐòÁзǷ¨¡±< [Ëã·¨ÌÖÂÛ]ÔÚÈëÕ»³öÕ»ÐòÁУ¨¼´ÓÉ¡®I¡¯ºÍ¡®O¡¯×é³ÉµÄ×Ö·û´®£©µÄÈÎһλÖã¬ÈëÕ»´ÎÊý£¨¡®I¡¯µÄ¸öÊý£©¶¼±ØÐë´óÓÚµÈÓÚ³öÕ»´ÎÊý£¨¼´¡®O¡¯µÄ¸öÊý£©£¬·ñÔòÊÓ×÷·Ç·¨ÐòÁУ¬Á¢¼´¸ø³öÐÅÏ¢£¬Í˳öËã·¨¡£Õû¸öÐòÁУ¨¼´¶Áµ½×Ö·ûÊý×éÖÐ×Ö·û´®µÄ½áÊø±ê¼Ç¡®\\0¡¯£©£¬ÈëÕ»´ÎÊý±ØÐëµÈÓÚ³öÕ»´ÎÊý£¨ÌâÄ¿ÖÐÒªÇóÕ»µÄ³õ̬ºÍÖÕ̬¶¼Îª¿Õ£©£¬·ñÔòÊÓΪ·Ç·¨ÐòÁС£ (6£©¼ÙÉèÒÔ´øÍ·½áµãµÄÑ»·Á´±í±íʾ¶ÓÁУ¬²¢ÇÒÖ»ÉèÒ»¸öÖ¸ÕëÖ¸Ïò¶ÓÎ²ÔªËØÕ¾µã(×¢Òâ²»ÉèÍ·Ö¸Õë) £¬ÊÔ±àдÏàÓ¦µÄÖÿնӡ¢ÅÐ¶Ó¿Õ ¡¢Èë¶ÓºÍ³ö¶ÓµÈËã·¨¡£ [ÌâÄ¿·ÖÎö] ÖÿնӾÍÊǽ¨Á¢Ò»¸öÍ·½Úµã£¬²¢°ÑͷβָÕë¶¼Ö¸ÏòÍ·½Úµã£¬Í·½ÚµãÊDz»´æ·ÅÊý¾ÝµÄ£»ÅжӿվÍÊǵ±Í·Ö¸ÕëµÈÓÚβָÕëʱ£¬¶Ó¿Õ£»Èë¶Óʱ£¬½«ÐµĽڵã²åÈëµ½Á´¶ÓÁеÄβ²¿£¬Í¬Ê±½«Î²Ö¸ÕëÖ¸ÏòÕâ¸ö½Úµã£»³ö¶Óʱ£¬É¾³ýµÄÊǶÓÍ·½Úµã£¬Òª×¢Òâ¶ÓÁеij¤¶È´óÓÚ1»¹ÊǵÈÓÚ1µÄÇé¿ö£¬Õâ¸öʱºòҪעÒâβָÕëµÄÐ޸ģ¬Èç¹ûµÈÓÚ1£¬ÔòҪɾ³ýβָÕëÖ¸ÏòµÄ½Úµã¡£ [Ëã·¨ÃèÊö] //Ïȶ¨ÒåÁ´¶Ó½á¹¹: typedef struct queuenode {Datatype data; struct queuenode *next; }QueueNode; //ÒÔÉÏÊǽáµãÀàÐ͵͍Òå typedef struct {queuenode *rear; }LinkQueue; //Ö»ÉèÒ»¸öÖ¸Ïò¶ÓÎ²ÔªËØµÄÖ¸Õë (1) ÖÃ¿Õ¶Ó void InitQueue( LinkQueue *Q) { //Öÿնӣº¾ÍÊÇʹͷ½áµã³ÉΪ¶ÓÎ²ÔªËØ QueueNode *s; Q->rear = Q->rear->next;//½«¶ÓβָÕëÖ¸ÏòÍ·½áµã while (Q->rear!=Q->rear->next)//µ±¶ÓÁзǿգ¬½«¶ÓÖÐÔªËØÖð¸ö³ö¶Ó {s=Q->rear->next; Q->rear->next=s->next; delete s; }//»ØÊÕ½áµã¿Õ¼ä 20 } (2) ÅÐ¶Ó¿Õ int EmptyQueue( LinkQueue *Q) { //Åжӿա£µ±Í·½áµãµÄnextÖ¸ÕëÖ¸Ïò×Ô¼ºÊ±Îª¿Õ¶Ó return Q->rear->next->next==Q->rear->next; } (3) Èë¶Ó void EnQueue( LinkQueue *Q, Datatype x) { //Èë¶Ó¡£Ò²¾ÍÊÇÔÚβ½áµã´¦²åÈëÔªËØ QueueNode *p=new QueueNode;//ÉêÇëнáµã p->data=x; p->next=Q->rear->next;//³õʼ»¯Ð½áµã²¢Á´Èë Q-rear->next=p; Q->rear=p;//½«Î²Ö¸ÕëÒÆÖÁнáµã } (4) ³ö¶Ó Datatype DeQueue( LinkQueue *Q) {//³ö¶Ó,°ÑÍ·½áµãÖ®ºóµÄÔªËØÕªÏ Datatype t; QueueNode *p; if(EmptyQueue( Q )) Error(\ p=Q->rear->next->next; //pÖ¸Ïò½«ÒªÕªÏµĽáµã x=p->data; //±£´æ½áµãÖÐÊý¾Ý if (p==Q->rear) {//µ±¶ÓÁÐÖÐÖ»ÓÐÒ»¸ö½áµãʱ£¬p½áµã³ö¶Óºó£¬Òª½«¶ÓβָÕëÖ¸ÏòÍ·½áµã Q->rear = Q->rear->next; Q->rear->next=p->next; } else Q->rear->next->next=p->next;//ժϽáµãp delete p;//Êͷű»É¾½áµã return x; } 21 £¨7£©¼ÙÉèÒÔÊý×éQ[m]´æ·ÅÑ»·¶ÓÁÐÖеÄÔªËØ, ͬʱÉèÖÃÒ»¸ö±êÖ¾tag£¬ÒÔtag == 0ºÍtag == 1À´Çø±ðÔÚ¶ÓÍ·Ö¸Õë(front)ºÍ¶ÓβָÕë(rear)ÏàµÈʱ£¬¶ÓÁÐ״̬Ϊ¡°¿Õ¡±»¹ÊÇ¡°Âú¡±¡£ÊÔ±àдÓë´Ë½á¹¹ÏàÓ¦µÄ²åÈë(enqueue)ºÍɾ³ý(dlqueue)Ëã·¨¡£ [Ëã·¨ÃèÊö] (1)³õʼ»¯ SeQueue QueueInit(SeQueue Q) {//³õʼ»¯¶ÓÁÐ Q.front=Q.rear=0; Q.tag=0; return Q; } (2)Èë¶Ó SeQueue QueueIn(SeQueue Q,int e) {//Èë¶ÓÁÐ if((Q.tag==1) && (Q.rear==Q.front)) cout<<\¶ÓÁÐÒÑÂú\else {Q.rear=(Q.rear+1) % m; Q.data[Q.rear]=e; if(Q.tag==0) Q.tag=1; //¶ÓÁÐÒѲ»¿Õ } return Q; } (3)³ö¶Ó ElemType QueueOut(SeQueue Q) {//³ö¶ÓÁÐ if(Q.tag==0) { cout<<\¶ÓÁÐΪ¿Õ\else {Q.front=(Q.front+1) % m; e=Q.data[Q.front]; if(Q.front==Q.rear) Q.tag=0; //¿Õ¶ÓÁÐ } return(e); } (8£©Èç¹ûÔÊÐíÔÚÑ»·¶ÓÁеÄÁ½¶Ë¶¼¿ÉÒÔ½øÐвåÈëºÍɾ³ý²Ù×÷¡£ÒªÇó£º ¢Ù д³öÑ»·¶ÓÁеÄÀàÐͶ¨Ò壻 ¢Ú д³ö¡°´Ó¶Óβɾ³ý¡±ºÍ¡°´Ó¶ÓÍ·²åÈ롱µÄËã·¨¡£ [ÌâÄ¿·ÖÎö] ÓÃһάÊý×é v[0..M-1]ʵÏÖÑ»·¶ÓÁУ¬ÆäÖÐMÊǶÓÁг¤¶È¡£Éè¶ÓÍ·Ö¸Õë frontºÍ¶ÓβָÕërear£¬Ô¼¶¨frontÖ¸Ïò¶ÓÍ·ÔªËØµÄǰһλÖã¬rearÖ¸Ïò¶ÓÎ²ÔªËØ¡£¶¨Òå 22 front=rearʱΪ¶Ó¿Õ£¬(rear+1)%m=front Ϊ¶ÓÂú¡£Ô¼¶¨¶ÓÍ·¶ËÈë¶ÓÏòϱêСµÄ·½Ïò·¢Õ¹£¬¶Óβ¶ËÈë¶ÓÏòϱê´óµÄ·½Ïò·¢Õ¹¡£ [Ëã·¨ÃèÊö] ¢Ù #define M ¶ÓÁпÉÄÜ´ïµ½µÄ×î´ó³¤¶È typedef struct {elemtp data[M]; int front,rear; }cycqueue; ¢Ú elemtp delqueue ( cycqueue Q) //QÊÇÈçÉ϶¨ÒåµÄÑ»·¶ÓÁУ¬±¾Ë㷨ʵÏÖ´Ó¶Óβɾ³ý£¬Èôɾ³ý³É¹¦£¬·µ»Ø±»É¾³ýÔªËØ£¬ ·ñÔò¸ø³ö³ö´íÐÅÏ¢¡£ {if (Q.front==Q.rear) { cout<<\¶ÓÁпÕ\Q.rear=(Q.rear-1+M)%M; //Ð޸ĶÓβָÕë¡£ return(Q.data[(Q.rear+1+M)%M]); //·µ»Ø³ö¶ÓÔªËØ¡£ }//´Ó¶Óβɾ³ýËã·¨½áÊø void enqueue (cycqueue Q, elemtp x) // QÊÇ˳Ðò´æ´¢µÄÑ»·¶ÓÁУ¬±¾Ë㷨ʵÏÖ¡°´Ó¶ÓÍ·²åÈë¡±ÔªËØx¡£ {if (Q.rear==(Q.front-1+M)%M) { cout<<\¶ÓÂú\ Q.data[Q.front]=x; //x Èë¶ÓÁÐ Q.front=(Q.front-1+M)%M; //Ð޸ĶÓÍ·Ö¸Õë¡£ }// ½áÊø´Ó¶ÓÍ·²åÈëËã·¨¡£ £¨9£©ÒÑÖªAckermannº¯Êý¶¨ÒåÈçÏÂ: ¢Ù д³ö¼ÆËãAck(m,n)µÄµÝ¹éËã·¨£¬²¢¸ù¾Ý´ËËã·¨¸ø³ö³öAck(2,1)µÄ¼ÆËã¹ý³Ì¡£ ¢Ú д³ö¼ÆËãAck(m,n)µÄ·ÇµÝ¹éËã·¨¡£ [Ëã·¨ÃèÊö] int Ack(int m,n) {if (m==0) return(n+1); else if(m!=0&&n==0) return(Ack(m-1,1)); else return(Ack(m-1,Ack(m,m-1)); }//Ëã·¨½áÊø ¢Ù Ack(2,1)µÄ¼ÆËã¹ý³Ì 23 Ack(2,1)= Ack(1,Ack(2,0)) //Òòm<>0,n<>0¶øµÃ ¢Ú int Ackerman(int m, int n) {int akm[M][N];int i,j; for(j=0;j {akm[i][0]=akm[i-1][1]; for(j=1;j akm[i][j]=akm[i-1][akm[i][j-1]]; } return(akm[m][n]); }//Ëã·¨½áÊø £¨10£©ÒÑÖªfΪµ¥Á´±íµÄ±íÍ·Ö¸Õë, Á´±íÖд洢µÄ¶¼ÊÇÕûÐÍÊý¾Ý£¬ÊÔд³öʵÏÖÏÂÁÐÔËËãµÄµÝ¹éËã·¨£º ¢Ù ÇóÁ´±íÖеÄ×î´óÕûÊý£» ¢Ú ÇóÁ´±íµÄ½áµã¸öÊý£» ¢Û ÇóËùÓÐÕûÊýµÄƽ¾ùÖµ¡£ [Ëã·¨ÃèÊö] ¢Ù int GetMax(LinkList p) { = Ack(1,Ack(1,1)) //Òòm<>0,n=0¶øµÃ = Ack(1,Ack(0,Ack(1,0))) // Òòm<>0,n<>0¶øµÃ = Ack(1,Ack(0,Ack(0,1))) // Òòm<>0,n=0¶øµÃ = Ack(1,Ack(0,2)) // Òòm=0¶øµÃ = Ack(1,3) // Òòm=0¶øµÃ = Ack(0,Ack(1,2)) //Òòm<>0,n<>0¶øµÃ = Ack(0,Ack(0,Ack(1,1))) //Òòm<>0,n<>0¶øµÃ = Ack(0,Ack(0,Ack(0,Ack(1,0)))) //Òòm<>0,n<>0¶øµÃ = Ack(0,Ack(0,Ack(0,Ack(0,1)))) //Òòm<>0,n=0¶øµÃ = Ack(0,Ack(0,Ack(0,2))) //Òòm=0¶øµÃ = Ack(0,Ack(0,3)) //Òòm=0¶øµÃ = Ack(0,4) //Òòn=0¶øµÃ =5 //Òòn=0¶øµÃ if(!p->next) else 24 return p->data; } { } int max=GetMax(p->next); return p->data>=max ? p->data:max; ¢Ú int GetLength(LinkList p) { } if(!p->next) else { } return GetLength(p->next)+1; return 1; ¢Û double GetAverage(LinkList p , int n) { } if(!p->next) else { } double ave=GetAverage(p->next,n-1); return (ave*(n-1)+p->data)/n; return p->data; 25 µÚ4Õ ´®¡¢Êý×éºÍ¹ãÒå±í 1£®Ñ¡ÔñÌâ £¨1£©´®ÊÇÒ»ÖÖÌØÊâµÄÏßÐÔ±í£¬ÆäÌØÊâÐÔÌåÏÖÔÚ£¨ £©¡£ A£®¿ÉÒÔ˳Ðò´æ´¢ B£®Êý¾ÝÔªËØÊÇÒ»¸ö×Ö·û C£®¿ÉÒÔÁ´Ê½´æ´¢ D£®Êý¾ÝÔªËØ¿ÉÒÔÊǶà¸ö×Ö·ûÈô ´ð°¸£ºB £¨2£©´®ÏÂÃæ¹ØÓÚ´®µÄµÄÐðÊöÖУ¬£¨ £©ÊDz»ÕýÈ·µÄ£¿ A£®´®ÊÇ×Ö·ûµÄÓÐÏÞÐòÁÐ B£®¿Õ´®ÊÇÓɿոñ¹¹³ÉµÄ´® C£®Ä£Ê½Æ¥ÅäÊÇ´®µÄÒ»ÖÖÖØÒªÔËËã D£®´®¼È¿ÉÒÔ²ÉÓÃ˳Ðò´æ´¢£¬Ò²¿ÉÒÔ²ÉÓÃÁ´Ê½´æ´¢ ´ð°¸£ºB ½âÊÍ£º¿Õ¸ñ³£³£ÊÇ´®µÄ×Ö·û¼¯ºÏÖеÄÒ»¸öÔªËØ£¬ÓÐÒ»¸ö»ò¶à¸ö¿Õ¸ñ×é³ÉµÄ´®³ÉΪ¿Õ¸ñ ´®£¬Áã¸ö×Ö·ûµÄ´®³ÉΪ¿Õ´®£¬Æä³¤¶ÈΪÁã¡£ £¨3£©´®¡°ababaaababaa¡±µÄnextÊý×éΪ£¨ £©¡£ A£®012345678999 B£®012121111212 C£®011234223456 D£®0123012322345 ´ð°¸£ºC £¨4£©´®¡°ababaabab¡±µÄnextvalΪ£¨ £©¡£ A£®010104101 B£®010102101 C£®010100011 D£®010101011 ´ð°¸£ºA £¨5£©´®µÄ³¤¶ÈÊÇÖ¸£¨ £©¡£ A£®´®ÖÐËùº¬²»Í¬×ÖĸµÄ¸öÊý B£®´®ÖÐËùº¬×Ö·ûµÄ¸öÊý C£®´®ÖÐËùº¬²»Í¬×Ö·ûµÄ¸öÊý D£®´®ÖÐËùº¬·Ç¿Õ¸ñ×Ö·ûµÄ¸öÊý ´ð°¸£ºB ½âÊÍ£º´®ÖÐ×Ö·ûµÄÊýÄ¿³ÆÎª´®µÄ³¤¶È¡£ £¨6£©¼ÙÉèÒÔÐÐÐòΪÖ÷Ðò´æ´¢¶þάÊý×éA=array[1..100,1..100]£¬Éèÿ¸öÊý¾ÝÔªËØÕ¼2¸ö´æ´¢µ¥Ôª£¬»ùµØÖ·Îª10£¬ÔòLOC[5,5]=£¨ £©¡£ A£®808 B£®818 C£®1010 D£®1020 ´ð°¸£ºB ½âÊÍ£ºÒÔÐÐÐòΪÖ÷£¬ÔòLOC[5,5]=[£¨5-1£©*100+£¨5-1£©]*2+10=818¡£ £¨7£©ÉèÓÐÊý×éA[i,j]£¬Êý×éµÄÿ¸öÔªËØ³¤¶ÈΪ3×Ö½Ú£¬iµÄֵΪ1µ½8£¬jµÄֵΪ1µ½10£¬Êý×é´ÓÄÚ´æÊ×µØÖ·BA¿ªÊ¼Ë³Ðò´æ·Å£¬µ±ÓÃÒÔÁÐΪÖ÷´æ·Åʱ£¬ÔªËØA[5,8]µÄ´æ´¢Ê×µØÖ·Îª£¨ £©¡£ A£®BA+141 B£®BA+180 C£®BA+222 D£®BA+225 ´ð°¸£ºB ½âÊÍ£ºÒÔÁÐÐòΪÖ÷£¬ÔòLOC[5,8]=[£¨8-1£©*8+£¨5-1£©]*3+BA=BA+180¡£ £¨8£©ÉèÓÐÒ»¸ö10½×µÄ¶Ô³Æ¾ØÕóA£¬²ÉÓÃѹËõ´æ´¢·½Ê½£¬ÒÔÐÐÐòΪÖ÷´æ´¢£¬a11ΪµÚÒ»ÔªËØ£¬Æä´æ´¢µØÖ·Îª1£¬Ã¿¸öÔªËØÕ¼Ò»¸öµØÖ·¿Õ¼ä£¬Ôòa85µÄµØÖ·Îª£¨ £©¡£ 26 A£®13 B£®32 C£®33 D£®40 ´ð°¸£ºC £¨9£©Èô¶Ôn½×¶Ô³Æ¾ØÕóAÒÔÐÐÐòΪÖ÷Ðò·½Ê½½«ÆäÏÂÈý½ÇÐεÄÔªËØ(°üÀ¨Ö÷¶Ô½ÇÏßÉÏËùÓÐÔªËØ)ÒÀ´Î´æ·ÅÓÚһάÊý×éB[1..(n(n+1))/2]ÖУ¬ÔòÔÚBÖÐÈ·¶¨aij£¨i A£®i*(i-1)/2+j B£®j*(j-1)/2+i C£®i*(i+1)/2+j D£®j*(j+1)/2+i ´ð°¸£ºB £¨10£©¶þάÊý×éAµÄÿ¸öÔªËØÊÇÓÉ10¸ö×Ö·û×é³ÉµÄ´®£¬ÆäÐÐϱêi=0,1,?,8,ÁÐϱê j=1,2,?,10¡£ÈôA°´ÐÐÏÈ´æ´¢£¬ÔªËØA[8,5]µÄÆðʼµØÖ·Óëµ±A°´ÁÐÏȴ洢ʱµÄÔªËØ£¨ £©µÄÆðʼµØÖ·Ïàͬ¡£Éèÿ¸ö×Ö·ûÕ¼Ò»¸ö×Ö½Ú¡£ A£®A[8,5] B£®A[3,10] C. A[5,8] D£®A[0,9] ´ð°¸£ºB ½âÊÍ£ºÉèÊý×é´ÓÄÚ´æÊ×µØÖ·M¿ªÊ¼Ë³Ðò´æ·Å£¬ÈôÊý×é°´ÐÐÏÈ´æ´¢£¬ÔªËØA[8,5]µÄÆð ʼµØÖ·Îª£ºM+[£¨8-0£©*10+£¨5-1£©]*1=M+84£»ÈôÊý×é°´ÁÐÏÈ´æ´¢£¬Ò×¼ÆËã³öÔªËØA[3,10]µÄÆðʼµØÖ·Îª£ºM+[£¨10-1£©*9+£¨3-0£©]*1=M+84¡£¹ÊÑ¡B¡£ £¨11£©Éè¶þάÊý×éA[1.. m£¬1.. n]£¨¼´mÐÐnÁУ©°´Ðд洢ÔÚÊý×éB[1.. m*n]ÖУ¬Ôò¶þάÊý×éÔªËØA[i,j]ÔÚһάÊý×éBÖеÄϱêΪ£¨ £©¡£ A£®(i-1)*n+j B£®(i-1)*n+j-1 C£®i*(j-1) D£®j*m+i-1 ´ð°¸£ºA ½âÊÍ£ºÌØÊâÖµ·¨¡£È¡i=j=1£¬Ò×ÖªA[1,1]µÄµÄϱêΪ1£¬ËĸöÑ¡ÏîÖнöÓÐAÑ¡ÏîÄÜ È·¶¨µÄֵΪ1£¬¹ÊÑ¡A¡£ £¨12£©Êý×éA[0..4,-1..-3,5..7]Öк¬ÓÐÔªËØµÄ¸öÊý£¨ £©¡£ A£®55 B£®45 C£®36 D£®16 ´ð°¸£ºB ½âÊÍ£º¹²ÓÐ5*3*3=45¸öÔªËØ¡£ £¨13£©¹ãÒå±íA=(a,b,(c,d),(e,(f,g)))£¬ÔòHead(Tail(Head(Tail(Tail(A)))))µÄֵΪ£¨ £©¡£ A£®(g) B£®(d) C£®c D£®d ´ð°¸£ºD ½âÊÍ£ºTail(A)=(b,(c,d),(e,(f,g)))£»Tail(Tail(A))=( (c,d),(e,(f,g)))£» Head(Tail(Tail(A)))= (c,d)£»Tail(Head(Tail(Tail(A))))=(d)£»Head(Tail(Head(Tail(Tail(A)))))=d¡£ £¨14£©¹ãÒå±í((a,b,c,d))µÄ±íÍ·ÊÇ£¨ £©£¬±íβÊÇ£¨ £©¡£ A£®a B£®( ) C£®(a,b,c,d) D£®(b,c,d) ´ð°¸£ºC¡¢B ½âÊÍ£º±íͷΪ·Ç¿Õ¹ãÒå±íµÄµÚÒ»¸öÔªËØ£¬¿ÉÒÔÊÇÒ»¸öµ¥Ô×Ó£¬Ò²¿ÉÒÔÊÇÒ»¸ö×Ó±í£¬ ((a,b,c,d))µÄ±íͷΪһ¸ö×Ó±í(a,b,c,d)£»±íβΪ³ýÈ¥±íÍ·Ö®Í⣬ÓÉÆäÓàÔªËØ¹¹³ÉµÄ±í£¬±íΪһ¶¨ÊǸö¹ãÒå±í£¬((a,b,c,d))µÄ±íβΪ¿Õ±í( )¡£ £¨15£©Éè¹ãÒå±íL=((a,b,c))£¬ÔòLµÄ³¤¶ÈºÍÉî¶È·Ö±ðΪ£¨ £©¡£ A£®1ºÍ1 B£®1ºÍ3 C£®1ºÍ2 D£®2ºÍ3 ´ð°¸£ºC 27 ½âÊÍ£º¹ãÒå±íµÄÉî¶ÈÊÇÖ¸¹ãÒå±íÖÐÕ¹¿ªºóËùº¬À¨ºÅµÄ²ãÊý£¬¹ãÒå±íµÄ³¤¶ÈÊÇÖ¸¹ãÒå±í ÖÐËùº¬ÔªËصĸöÊý¡£¸ù¾Ý¶¨ÒåÒ×ÖªLµÄ³¤¶ÈΪ1£¬Éî¶ÈΪ2¡£ 2£®Ó¦ÓÃÌâ £¨1£©ÒÑ֪ģʽ´®t=¡®abcaabbabcab¡¯Ð´³öÓÃKMP·¨ÇóµÃµÄÿ¸ö×Ö·û¶ÔÓ¦µÄnextºÍnextvalº¯ÊýÖµ¡£ ´ð°¸£º ģʽ´®tµÄnextºÍnextvalÖµÈçÏ£º j t´® next[j] nextval[j] £¨2£©ÉèÄ¿±êΪt=¡°abcaabbabcabaacbacba¡±,ģʽΪp=¡°abcabaa¡± ¢Ù ¼ÆËãģʽpµÄnaxtvalº¯ÊýÖµ£» ¢Ú ²»Ð´³öËã·¨,Ö»»³öÀûÓÃKMPËã·¨½øÐÐģʽƥÅäʱÿһÌËµÄÆ¥Åä¹ý³Ì¡£ ´ð°¸£º ¢Ù pµÄnextvalº¯ÊýֵΪ0110132¡££¨pµÄnextº¯ÊýֵΪ0111232£©¡£ ¢Ú ÀûÓÃKMP(¸Ä½øµÄnextval)Ëã·¨£¬Ã¿ÌËÆ¥Åä¹ý³ÌÈçÏ£º µÚÒ»ÌËÆ¥Å䣺 abcaabbabcabaacbacba abcab(i=5,j=5) µÚ¶þÌËÆ¥Å䣺 abcaabbabcabaacbacba abc(i=7,j=3) µÚÈýÌËÆ¥Å䣺 abcaabbabcabaacbacba a(i=7,j=1) µÚËÄÌËÆ¥Å䣺 abcaabbabcabaac bacba (³É¹¦) abcabaa(i=15,j=8) £¨3£©Êý×éAÖУ¬Ã¿¸öÔªËØA[i,j]µÄ³¤¶È¾ùΪ32¸ö¶þ½øÎ»,ÐÐϱê´Ó-1µ½9£¬ÁÐϱê´Ó1µ½11£¬´ÓÊ×µØÖ·S¿ªÊ¼Á¬Ðø´æ·ÅÖ÷´æ´¢Æ÷ÖУ¬Ö÷´æ´¢Æ÷×Ö³¤Îª16λ¡£Çó£º ¢Ù ´æ·Å¸ÃÊý×éËùÐè¶àÉÙµ¥Ôª£¿ ¢Ú ´æ·ÅÊý×éµÚ4ÁÐËùÓÐÔªËØÖÁÉÙÐè¶àÉÙµ¥Ôª£¿ ¢Û Êý×é°´Ðдæ·Åʱ£¬ÔªËØA[7,4]µÄÆðʼµØÖ·ÊǶàÉÙ£¿ ¢Ü Êý×é°´Áдæ·Åʱ£¬ÔªËØA[4,7]µÄÆðʼµØÖ·ÊǶàÉÙ£¿ ´ð°¸£º ÿ¸öÔªËØ32¸ö¶þ½øÖÆÎ»£¬Ö÷´æ×Ö³¤16룬¹Êÿ¸öÔªËØÕ¼2¸ö×Ö³¤£¬ÐÐϱê¿ÉÆ½ÒÆÖÁ1µ½11¡£ £¨1£©242 £¨2£©22 £¨3£©s+182 £¨4£©s+142 28 1 2 3 4 5 6 7 8 9 10 11 12 a b c a a b b a b c a b 0 1 1 1 2 2 3 1 2 3 4 5 0 1 1 0 2 1 3 0 1 1 0 5 (4)Ç뽫Ïã½¶bananaÓù¤¾ß H( )¡ªHead( )£¬T( )¡ªTail( )´ÓLÖÐÈ¡³ö¡£ L=(apple,(orange,(strawberry,(banana)),peach),pear) ´ð°¸£ºH£¨H£¨T£¨H£¨T£¨H£¨T£¨L£©£©£©£©£©£©£© 3£®Ëã·¨Éè¼ÆÌâ £¨1£©Ð´Ò»¸öË㷨ͳ¼ÆÔÚÊäÈë×Ö·û´®Öи÷¸ö²»Í¬×Ö·û³öÏֵįµ¶È²¢½«½á¹û´æÈëÎļþ£¨×Ö·û´®ÖеĺϷ¨×Ö·ûΪA-ZÕâ26¸ö×ÖĸºÍ0-9Õâ10¸öÊý×Ö£©¡£ [ÌâÄ¿·ÖÎö] ÓÉÓÚ×Öĸ¹²26¸ö£¬¼ÓÉÏÊý×Ö·ûºÅ10¸ö¹²36¸ö£¬ËùÒÔÉèÒ»³¤36µÄÕûÐÍÊý×飬ǰ10¸ö·ÖÁ¿´æ·ÅÊý×Ö×Ö·û³öÏֵĴÎÊý£¬ÓàÏ´æ·Å×Öĸ³öÏֵĴÎÊý¡£´Ó×Ö·û´®ÖжÁ³öÊý×Ö×Ö·ûʱ£¬×Ö·ûµÄASCII´úÂëÖµ¼õÈ¥Êý×Ö×Ö·û ¡®0¡¯µÄASCII´úÂëÖµ£¬µÃ³öÆäÊýÖµ(0..9)£¬×ÖĸµÄASCII´úÂëÖµ¼õÈ¥×Ö·û¡®A¡¯µÄASCII´úÂëÖµ¼ÓÉÏ10£¬´æÈëÆäÊý×éµÄ¶ÔӦϱê·ÖÁ¿ÖС£ÓöÆäËü·ûºÅ²»×÷´¦Àí£¬Ö±ÖÁÊäÈë×Ö·û´®½áÊø¡£ [Ëã·¨ÃèÊö] void Count£¨£© //ͳ¼ÆÊäÈë×Ö·û´®ÖÐÊý×Ö×Ö·ûºÍ×Öĸ×Ö·ûµÄ¸öÊý¡£ £ûint i£¬num[36]£» char ch£» for£¨i£½0£»i<36£»i++£©num[i]£½£°£»// ³õʼ»¯ while£¨£¨ch£½getchar£¨£©£©!=¡®#¡¯£© //¡®#¡¯±íʾÊäÈë×Ö·û´®½áÊø¡£ if£¨¡®0¡¯<=ch<=¡®9¡¯£©£ûi=ch£48;num[i]++£»£ý // Êý×Ö×Ö·û else if£¨¡®A¡¯<=ch<=¡®Z¡¯£©£ûi=ch-65+10;num[i]++£»£ý// ×Öĸ×Ö·û for£¨i=0£»i<10£»i++£© // Êä³öÊý×Ö×Ö·ûµÄ¸öÊý £¨2£©Ð´Ò»¸öµÝ¹éËã·¨À´ÊµÏÖ×Ö·û´®ÄæÐò´æ´¢£¬ÒªÇó²»ÁíÉè´®´æ´¢¿Õ¼ä¡£ [ÌâÄ¿·ÖÎö]ʵÏÖ×Ö·û´®µÄÄæÖò¢²»ÄÑ£¬µ«±¾Ìâ¡°ÒªÇó²»ÁíÉè´®´æ´¢¿Õ¼ä¡±À´ÊµÏÖ×Ö·û´®ÄæÐò´æ´¢£¬¼´µÚÒ»¸öÊäÈëµÄ×Ö·û×îºó´æ´¢£¬×îºóÊäÈëµÄ×Ö·ûÏÈ´æ´¢£¬Ê¹Óõݹé¿ÉÈÝÒ××öµ½¡£ [Ëã·¨ÃèÊö] void InvertStore(char A[]) //×Ö·û´®ÄæÐò´æ´¢µÄµÝ¹éËã·¨¡£ {char ch; static int i = 0;//ÐèҪʹÓþ²Ì¬±äÁ¿ cin>>ch; if (ch!= '.') //¹æ¶¨'.'ÊÇ×Ö·û´®ÊäÈë½áÊø±êÖ¾ 29 £ý cout<<¡°Êý×Ö¡±< for£¨i£½10£»i<36£»i++£©// Çó³ö×Öĸ×Ö·ûµÄ¸öÊý } {InvertStore(A); A[i++] = ch;//×Ö·û´®ÄæÐò´æ´¢ } A[i] = '\\0'; //×Ö·û´®½áβ±ê¼Ç £¨3£©±àдËã·¨£¬ÊµÏÖÏÂÃæº¯ÊýµÄ¹¦ÄÜ¡£º¯Êývoid insert(char*s,char*t,int pos)½«×Ö·û´®t²åÈëµ½×Ö·û´®sÖУ¬²åÈëλÖÃΪpos¡£¼ÙÉè·ÖÅ䏸×Ö·û´®sµÄ¿Õ¼ä×ã¹»ÈÃ×Ö·û´®t²åÈë¡££¨ËµÃ÷£º²»µÃʹÓÃÈκο⺯Êý£© [ÌâÄ¿·ÖÎö]±¾ÌâÊÇ×Ö·û´®µÄ²åÈëÎÊÌ⣬ҪÇóÔÚ×Ö·û´®sµÄposλÖ㬲åÈë×Ö·û´®t¡£Ê×ÏÈÓ¦²éÕÒ×Ö·û´®sµÄposλÖ㬽«µÚpos¸ö×Ö·ûµ½×Ö·û´®sβµÄ×Ó´®ÏòºóÒÆ¶¯×Ö·û´®tµÄ³¤¶È£¬È»ºó½«×Ö·û´®t¸´ÖƵ½×Ö·û´®sµÄµÚposλÖÃºó¡£ ¶Ô²åÈëλÖÃposÒªÑéÖ¤ÆäºÏ·¨ÐÔ£¬Ð¡ÓÚ1»ò´óÓÚ´®sµÄ³¤¶È¾ùΪ·Ç·¨£¬ÒòÌâÄ¿¼ÙÉè¸ø×Ö·û´®sµÄ¿Õ¼ä×ã¹»´ó£¬¹Ê¶Ô²åÈë²»±ØÅÐÒç³ö¡£ [Ëã·¨ÃèÊö] void insert(char *s,char *t,int pos) //½«×Ö·û´®t²åÈë×Ö·û´®sµÄµÚpos¸öλÖᣠ{int i=1,x=0; char *p=s,*q=t; //p£¬q·Ö±ðΪ×Ö·û´®sºÍtµÄ¹¤×÷Ö¸Õë if(pos<1) {cout<<¡°pos²ÎÊýλÖ÷Ƿ¨¡±< if(*p == '/0') { cout< while(*p!= '/0') {p++; i++;} //²éµ½Î²Ê±£¬iΪ×Ö·û¡®\\0¡¯µÄϱ꣬pÒ²Ö¸Ïò¡®\\0¡¯¡£ while(*q!= '\\0') {q++; x++; } //²éÕÒ×Ö·û´®tµÄ³¤¶Èx£¬Ñ»·½áÊøÊ±qÖ¸Ïò'\\0'¡£ for(j=i;j>=pos ;j--){*(p+x)=*p; p--;}//´®sµÄposºóµÄ×Ó´®ÓÒÒÆ£¬¿Õ³ö´®tµÄλÖᣠq--; //Ö¸Õëq»ØÍ˵½´®tµÄ×îºóÒ»¸ö×Ö·û for(j=1;j<=x;j++) *p--=*q--; //½«t´®²åÈëµ½sµÄposλÖÃÉÏ [Ëã·¨ÌÖÂÛ] ´®sµÄ½áÊø±ê¼Ç('\\0')Ò²ºóÒÆÁË£¬¶ø´®tµÄ½áβ±ê¼Ç²»Ó¦²åÈëµ½sÖС£ £¨4£©ÒÑÖª×Ö·û´®S1Öдæ·ÅÒ»¶ÎÓ¢ÎÄ£¬Ð´³öËã·¨format(s1,s2,s3,n),½«Æä°´¸ø¶¨µÄ³¤¶Èn¸ñʽ»¯³ÉÁ½¶Ë¶ÔÆëµÄ×Ö·û´®S2, Æä¶àÓàµÄ×Ö·ûËÍS3¡£ [ÌâÄ¿·ÖÎö]±¾ÌâÒªÇó×Ö·û´®s1²ð·Ö³É×Ö·û´®s2ºÍ×Ö·û´®s3£¬ÒªÇó×Ö·û´®s2¡°°´¸ø¶¨³¤¶Èn¸ñʽ»¯³ÉÁ½¶Ë¶ÔÆëµÄ×Ö·û´®¡±£¬¼´³¤¶ÈΪnÇÒÊ×β×Ö·û²»µÃΪ¿Õ¸ñ×Ö·û¡£Ëã·¨´Ó×óµ½ÓÒɨÃè×Ö·û´®s1£¬ÕÒµ½µÚÒ»¸ö·Ç¿Õ¸ñ×Ö·û£¬¼ÆÊýµ½n£¬µÚn¸ö¿½Èë×Ö·û´®s2µÄ×Ö·û²»µÃΪ¿Õ¸ñ£¬È»ºó½«ÓàÏÂ×Ö·û¸´ÖƵ½×Ö·û´®s3ÖС£ [Ëã·¨ÃèÊö] 30 void format (char *s1,*s2,*s3) //½«×Ö·û´®s1²ð·Ö³É×Ö·û´®s2ºÍ×Ö·û´®s3£¬ÒªÇó×Ö·û´®s2Êdz¤nÇÒÁ½¶Ë¶ÔÆë {char *p=s1, *q=s2; int i=0; } £¨5£©Éè¶þάÊý×éa[1..m, 1..n] º¬ÓÐm*n ¸öÕûÊý¡£ ¢Ù дһ¸öËã·¨ÅжÏaÖÐËùÓÐÔªËØÊÇ·ñ»¥²»Ïàͬ?Êä³öÏà¹ØÐÅÏ¢(yes/no)£» ¢Ú ÊÔ·ÖÎöËã·¨µÄʱ¼ä¸´ÔÓ¶È¡£ ¢Ù [ÌâÄ¿·ÖÎö]Åж϶þάÊý×éÖÐÔªËØÊÇ·ñ»¥²»Ïàͬ£¬Ö»ÓÐÖð¸ö±È½Ï,ÕÒµ½Ò»¶ÔÏàµÈµÄÔªËØ£¬¾Í¿É½áÂÛΪ²»ÊÇ»¥²»Ïàͬ¡£ÈçºÎ´ïµ½Ã¿¸öÔªËØÍ¬ÆäËüÔªËØ±È½ÏÒ»´ÎÇÒÖ»Ò»´Î£¿ÔÚµ±Ç°ÐУ¬Ã¿¸öÔªËØÒªÍ¬±¾ÐкóÃæµÄÔªËØ±È½ÏÒ»´Î£¨ÏÂÃæµÚÒ»¸öÑ»·¿ØÖƱäÁ¿pµÄforÑ»·£©£¬È»ºóͬµÚi+1Ðм°ÒÔºó¸÷ÐÐÔªËØ±È½ÏÒ»´Î£¬Õâ¾ÍÊÇÑ»·¿ØÖƱäÁ¿kºÍpµÄ¶þ²ãforÑ»·¡£ [Ëã·¨ÃèÊö] int JudgEqual(ing a[m][n],int m,n) //Åж϶þάÊý×éÖÐËùÓÐÔªËØÊÇ·ñ»¥²»Ïàͬ£¬ÈçÊÇ£¬·µ»Ø1£»·ñÔò£¬·µ»Ø0¡£ {for(i=0;i {for(p=j+1;p if(a[i][j]==a[i][p]) {cout<<¡°no¡±; return(0); } //Ö»ÒªÓÐÒ»¸öÏàͬµÄ£¬¾Í½áÂÛ²»ÊÇ»¥²»Ïàͬ 31 while(*p!= '\\0' && *p== ' ') p++;//Â˵ôs1×ó¶Ë¿Õ¸ñ if(*p== '\\0') {cout<<\×Ö·û´®s1Ϊ¿Õ´®»ò¿Õ¸ñ´®\} while( *p!='\\0' && i if(*p =='\\0'){cout<<\×Ö·û´®s1ûÓÐ\¸öÓÐЧ×Ö·û\if(*(--q)==' ' ) //Èô×îºóÒ»¸ö×Ö·ûΪ¿Õ¸ñ£¬ÔòÐèÏòºóÕÒµ½µÚÒ»¸ö·Ç¿Õ¸ñ×Ö·û {p-- ; //pÖ¸ÕëÒ²ºóÍË while(*p==' '&&*p!='\\0') p++;//Íùºó²éÕÒÒ»¸ö·Ç¿Õ¸ñ×Ö·û×÷´®s2µÄβ×Ö·û if(*p=='\\0') {cout<<\´®Ã»ÓÐ\¸öÁ½¶Ë¶ÔÆëµÄ×Ö·û´®\ *q=*p; //×Ö·û´®s2×îºóÒ»¸ö·Ç¿Õ×Ö·û *(++q)='\\0'; //ÖÃs2×Ö·û´®½áÊø±ê¼Ç } *q=s3;p++; //½«s1´®ÆäÓಿ·ÖËÍ×Ö·û´®s3¡£ while (*p!= '\\0') {*q=*p; q++; p++;} *q='\\0'; //Öô®s3½áÊø±ê¼Ç for(k=i+1;k if(a[i][j]==a[k][p]) { cout<<¡°no¡±; return(0); } }// for(j=0;j cout<<¡°yes¡±; return(1); //ÔªËØ»¥²»Ïàͬ }//Ëã·¨JudgEqual½áÊø ¢Ú¶þάÊý×éÖеÄÿһ¸öÔªËØÍ¬ÆäËüÔªËØ¶¼±È½ÏÒ»´Î£¬Êý×éÖй²m*n¸öÔªËØ£¬µÚ1¸öÔªËØÍ¬ÆäËüm*n-1¸öÔªËØ±È½Ï£¬µÚ2¸öÔªËØÍ¬ÆäËüm*n-2 ¸öÔªËØ±È½Ï£¬??£¬µÚm*n-1¸öÔªËØÍ¬×îºóÒ»¸öÔªËØ(m*n)±È½ÏÒ»´Î,ËùÒÔÔÚÔªËØ»¥²»ÏàµÈʱ×ܵıȽϴÎÊýΪ (m*n-1)+(m*n-2)+?+2+1=£¨m*n£©(m*n-1)/2¡£ÔÚÓÐÏàÍ¬ÔªËØÊ±,¿ÉÄܵÚÒ»´Î±È½Ï¾ÍÏàͬ,Ò²¿ÉÄÜ×îºóÒ»´Î±È½ÏʱÏàͬ,ÉèÔÚ(m*n-1)¸öλÖÃÉϾù¿ÉÄÜÏàͬ,ÕâʱµÄƽ¾ù±È½Ï´ÎÊýԼΪ£¨m*n£©(m*n-1)/4£¬×ܵÄʱ¼ä¸´ÔÓ¶ÈÊÇO(n)¡£ (6)ÉèÈÎÒân¸öÕûÊý´æ·ÅÓÚÊý×éA(1:n)ÖУ¬ÊÔ±àдËã·¨£¬½«ËùÓÐÕýÊýÅÅÔÚËùÓиºÊýÇ°Ãæ£¨ÒªÇóËã·¨¸´ÔÓ¶ÈΪ0(n)£©¡£ [ÌâÄ¿·ÖÎö]±¾ÌâÊôÓÚÅÅÐòÎÊÌ⣬ֻÊÇÅųöÕý¸º£¬²»Åųö´óС¡£¿ÉÔÚÊý×éÊ×βÉèÁ½¸öÖ¸ÕëiºÍj£¬i×ÔСÖÁ´óËÑË÷µ½¸ºÊýÍ£Ö¹£¬j×Ô´óÖÁСËÑË÷µ½ÕýÊýÍ£Ö¹¡£È»ºóiºÍjËùÖ¸Êý¾Ý½»»»£¬¼ÌÐøÒÔÉϹý³Ì£¬Ö±µ½ i=jΪֹ¡£ [Ëã·¨ÃèÊö] void Arrange(int A[],int n) //n¸öÕûÊý´æÓÚÊý×éAÖУ¬±¾Ëã·¨½«Êý×éÖÐËùÓÐÕýÊýÅÅÔÚËùÓиºÊýµÄÇ°Ãæ {int i=0,j=n-1,x; //ÓÃÀàC±àд£¬Êý×éϱê´Ó0¿ªÊ¼ while(i {while(i if(i }// while(i [Ëã·¨ÌÖÂÛ]¶ÔÊý×éÖÐÔªËØ¸÷±È½ÏÒ»´Î£¬±È½Ï´ÎÊýΪn¡£×î¼ÑÇé¿ö(ÒÑÅźÃ,ÕýÊýÔÚǰ,¸ºÊýÔÚºó)²»·¢Éú½»»»£¬×î²îÇé¿ö(¸ºÊý¾ùÔÚÕýÊýÇ°Ãæ)·¢Éún/2´Î½»»»¡£ÓÃÀàc±àд£¬Êý×é½çżÊÇ0..n-1¡£¿Õ¼ä¸´ÔÓ¶ÈΪO(1). 32 4 µÚ5Õ Ê÷ºÍ¶þ²æÊ÷ 1£®Ñ¡ÔñÌâ £¨1£©°ÑÒ»¿ÃÊ÷ת»»Îª¶þ²æÊ÷ºó£¬Õâ¿Ã¶þ²æÊ÷µÄÐÎ̬ÊÇ£¨ £©¡£ A£®Î¨Ò»µÄ £Â£®ÓжàÖÖ C£®ÓжàÖÖ£¬µ«¸ù½áµã¶¼Ã»ÓÐ×óº¢×Ó £Ä£®ÓжàÖÖ£¬µ«¸ù½áµã¶¼Ã»ÓÐÓÒº¢×Ó ´ð°¸£ºA ½âÊÍ£ºÒòΪ¶þ²æÊ÷ÓÐ×óº¢×Ó¡¢ÓÒº¢×ÓÖ®·Ö£¬¹ÊÒ»¿ÃÊ÷ת»»Îª¶þ²æÊ÷ºó£¬Õâ¿Ã¶þ²æÊ÷µÄ ÐÎ̬ÊÇΨһµÄ¡£ £¨2£©ÓÉ3¸ö½áµã¿ÉÒÔ¹¹Ôì³ö¶àÉÙÖÖ²»Í¬µÄ¶þ²æÊ÷£¿£¨ £© A£®2 B£®3 C£®4 D£®5 ´ð°¸£ºD ½âÊÍ£ºÎåÖÖÇé¿öÈçÏ£º AABCABABABB C C C C £¨3£©Ò»¿ÃÍêÈ«¶þ²æÊ÷ÉÏÓÐ1001¸ö½áµã£¬ÆäÖÐÒ¶×Ó½áµãµÄ¸öÊýÊÇ£¨ £©¡£ A£®250 B£® 500 C£®254 D£®501 ´ð°¸£ºD ½âÊÍ£ºÉè¶ÈΪ0½áµã£¨Ò¶×Ó½áµã£©¸öÊýΪA£¬¶ÈΪ1µÄ½áµã¸öÊýΪB£¬¶ÈΪ2µÄ½áµã¸öÊýΪC£¬ÓÐA=C+1£¬A+B+C=1001£¬¿ÉµÃ2C+B=1000£¬ÓÉÍêÈ«¶þ²æÊ÷µÄÐÔÖʿɵÃB=0»ò1£¬ÓÖÒòΪCΪÕûÊý£¬ËùÒÔB=0£¬C=500£¬A=501£¬¼´ÓÐ501¸öÒ¶×Ó½áµã¡£ £¨4£©Ò»¸ö¾ßÓÐ1025¸ö½áµãµÄ¶þ²æÊ÷µÄ¸ßhΪ£¨ £©¡£ A£®11 B£®10 C£®11ÖÁ1025Ö®¼ä D£®10ÖÁ1024Ö®¼ä ´ð°¸£ºC ½âÊÍ£ºÈôÿ²ã½öÓÐÒ»¸ö½áµã£¬ÔòÊ÷¸ßhΪ1025£»ÇÒÆä×îСÊ÷¸ßΪ ?log21025? + 1=11£¬¼´hÔÚ11ÖÁ1025Ö®¼ä¡£ £¨5£©Éî¶ÈΪhµÄÂúm²æÊ÷µÄµÚk²ãÓУ¨ £©¸ö½áµã¡£(1= k-1 B£®m-1 C£®m D£®m-1 h k-1 kh-1h ´ð°¸£ºA ½âÊÍ£ºÉî¶ÈΪhµÄÂúm²æÊ÷¹²ÓÐm-1¸ö½áµã£¬µÚk²ãÓÐm£¨6£©ÀûÓöþ²æÁ´±í´æ´¢Ê÷£¬Ôò¸ù½áµãµÄÓÒÖ¸ÕëÊÇ£¨ £©¡£ A£®Ö¸Ïò×î×óº¢×Ó B£®Ö¸Ïò×îÓÒº¢×Ó C£®¿Õ D£®·Ç¿Õ ´ð°¸£ºC ¸ö½áµã¡£ 33 ½âÊÍ£ºÀûÓöþ²æÁ´±í´æ´¢Ê÷ʱ£¬ÓÒÖ¸ÕëÖ¸ÏòÐֵܽáµã£¬ÒòΪ¸ù½ÚµãûÓÐÐֵܽáµã£¬¹Ê¸ù½ÚµãµÄÓÒÖ¸ÕëÖ¸Ïò¿Õ¡£ £¨7£©¶Ô¶þ²æÊ÷µÄ½áµã´Ó1¿ªÊ¼½øÐÐÁ¬Ðø±àºÅ£¬ÒªÇóÿ¸ö½áµãµÄ±àºÅ´óÓÚÆä×ó¡¢ÓÒº¢×ӵıàºÅ£¬Í¬Ò»½áµãµÄ×óÓÒº¢×ÓÖУ¬Æä×óº¢×ӵıàºÅСÓÚÆäÓÒº¢×ӵıàºÅ£¬¿É²ÉÓ㨠£©±éÀúʵÏÖ±àºÅ¡£ A£®ÏÈÐò B. ÖÐÐò C. ºóÐò D. ´Ó¸ù¿ªÊ¼°´²ã´Î±éÀú ´ð°¸£ºC ½âÊÍ£º¸ù¾ÝÌâÒâ¿ÉÖª°´ÕÕÏÈ×óº¢×Ó¡¢ÔÙÓÒº¢×Ó¡¢×îºóË«Ç×½áµãµÄ˳Ðò±éÀú¶þ²æÊ÷£¬¼´ºóÐò±éÀú¶þ²æÊ÷¡£ £¨8£©Èô¶þ²æÊ÷²ÉÓöþ²æÁ´±í´æ´¢½á¹¹£¬Òª½»»»ÆäËùÓзÖÖ§½áµã×ó¡¢ÓÒ×ÓÊ÷µÄλÖã¬ÀûÓ㨠£©±éÀú·½·¨×îºÏÊÊ¡£ A£®Ç°Ðò B£®ÖÐÐò C£®ºóÐò D£®°´²ã´Î ´ð°¸£ºC ½âÊÍ£ººóÐø±éÀúºÍ²ã´Î±éÀú¾ù¿ÉʵÏÖ×óÓÒ×ÓÊ÷µÄ½»»»£¬²»¹ý²ã´Î±éÀúµÄʵÏÖÏûºÄ±ÈºóÐø´ó£¬ºóÐò±éÀú·½·¨×îºÏÊÊ¡£ £¨9£©ÔÚÏÂÁд洢ÐÎʽÖУ¬£¨ £©²»ÊÇÊ÷µÄ´æ´¢ÐÎʽ£¿ A£®Ë«Ç×±íʾ·¨ B£®º¢×ÓÁ´±í±íʾ·¨ C£®º¢×ÓÐֵܱíʾ·¨ D£®Ë³Ðò´æ´¢±íʾ·¨ ´ð°¸£ºD ½âÊÍ£ºÊ÷µÄ´æ´¢½á¹¹ÓÐÈýÖÖ£ºË«Ç×±íʾ·¨¡¢º¢×Ó±íʾ·¨¡¢º¢×ÓÐֵܱíʾ·¨£¬ÆäÖк¢×ÓÐֵܱíʾ·¨Êdz£Óõıíʾ·¨£¬ÈÎÒâÒ»¿ÃÊ÷¶¼ÄÜͨ¹ýº¢×ÓÐֵܱíʾ·¨×ª»»Îª¶þ²æÊ÷½øÐд洢¡£ £¨10£©Ò»¿Ã·Ç¿ÕµÄ¶þ²æÊ÷µÄÏÈÐò±éÀúÐòÁÐÓëºóÐò±éÀúÐòÁÐÕýºÃÏà·´£¬Ôò¸Ã¶þ²æÊ÷Ò»¶¨Âú×㣨 £©¡£ A£®ËùÓеĽáµã¾ùÎÞ×óº¢×Ó B£®ËùÓеĽáµã¾ùÎÞÓÒº¢×Ó C£®Ö»ÓÐÒ»¸öÒ¶×Ó½áµã D£®ÊÇÈÎÒâÒ»¿Ã¶þ²æÊ÷ ´ð°¸£ºC ½âÊÍ£ºÒòΪÏÈÐò±éÀú½á¹ûÊÇ¡°ÖÐ×óÓÒ¡±£¬ºóÐò±éÀú½á¹ûÊÇ¡°×óÓÒÖС±£¬µ±Ã»ÓÐ×ó×ÓÊ÷ʱ£¬¾ÍÊÇ¡°ÖÐÓÒ¡±ºÍ¡°ÓÒÖС±£»µ±Ã»ÓÐÓÒ×ÓÊ÷ʱ£¬¾ÍÊÇ¡°ÖÐ×󡱺͡°×óÖС±¡£ÔòËùÓеĽáµã¾ùÎÞ×óº¢×Ó»òËùÓеĽáµã¾ùÎÞÓÒº¢×Ó¾ù¿É£¬ËùÒÔA¡¢B²»ÄÜÑ¡£¬ÓÖËùÓеĽáµã¾ùÎÞ×óº¢×ÓÓëËùÓеĽáµã¾ùÎÞÓÒº¢×Óʱ£¬¾ùÖ»ÓÐÒ»¸öÒ¶×Ó½áµã£¬¹ÊÑ¡C¡£ £¨11£©Éè¹þ·òÂüÊ÷ÖÐÓÐ199¸ö½áµã£¬Ôò¸Ã¹þ·òÂüÊ÷ÖÐÓУ¨ £©¸öÒ¶×Ó½áµã¡£ A£®99 C£®101 ´ð°¸£ºB ½âÊÍ£ºÔÚ¹þ·òÂüÊ÷ÖÐûÓжÈΪ1µÄ½áµã£¬Ö»ÓжÈΪ0£¨Ò¶×Ó½áµã£©ºÍ¶ÈΪ2µÄ½áµã¡£ÉèÒ¶×Ó½áµãµÄ¸öÊýΪn0£¬¶ÈΪ2µÄ½áµãµÄ¸öÊýΪn2£¬Óɶþ²æÊ÷µÄÐÔÖÊn0=n2+1£¬Ôò×ܽáµãÊýn= n0+n2=2*n0-1£¬µÃµ½n0=100¡£ £¨12£©ÈôXÊǶþ²æÖÐÐòÏßË÷Ê÷ÖÐÒ»¸öÓÐ×óº¢×ӵĽáµã£¬ÇÒX²»Îª¸ù£¬ÔòXµÄǰÇýΪ£¨ £©¡£ A£®XµÄË«Ç× B£®XµÄÓÒ×ÓÊ÷ÖÐ×î×óµÄ½áµã 34 B£®100 D£®102 C£®XµÄ×ó×ÓÊ÷ÖÐ×îÓÒ½áµã D£®XµÄ×ó×ÓÊ÷ÖÐ×îÓÒÒ¶½áµã ´ð°¸£ºC £¨13£©ÒýÈë¶þ²æÏßË÷Ê÷µÄÄ¿µÄÊÇ£¨ £©¡£ A£®¼Ó¿ì²éÕÒ½áµãµÄǰÇý»òºó¼ÌµÄËÙ¶È B£®ÎªÁËÄÜÔÚ¶þ²æÊ÷Öз½±ãµÄ½øÐвåÈëÓëɾ³ý C£®ÎªÁËÄÜ·½±ãµÄÕÒµ½Ë«Ç× D£®Ê¹¶þ²æÊ÷µÄ±éÀú½á¹ûΨһ ´ð°¸£ºA £¨14£©ÉèFÊÇÒ»¸öÉÁÖ£¬BÊÇÓÉF±ä»»µÃµÄ¶þ²æÊ÷¡£ÈôFÖÐÓÐn¸ö·ÇÖն˽áµã£¬ÔòBÖÐÓÒÖ¸ÕëÓòΪ¿ÕµÄ½áµãÓУ¨ £©¸ö¡£ A£®n?1 ´ð°¸£ºC £¨15£©n£¨n¡Ý2£©¸öȨֵ¾ù²»ÏàͬµÄ×Ö·û¹¹³É¹þ·òÂüÊ÷£¬¹ØÓÚ¸ÃÊ÷µÄÐðÊöÖУ¬´íÎóµÄÊÇ£¨ £©¡£ A£®¸ÃÊ÷Ò»¶¨ÊÇÒ»¿ÃÍêÈ«¶þ²æÊ÷ B£®Ê÷ÖÐÒ»¶¨Ã»ÓжÈΪ1µÄ½áµã C£®Ê÷ÖÐÁ½¸öȨֵ×îСµÄ½áµãÒ»¶¨ÊÇÐֵܽáµã D£®Ê÷ÖÐÈÎÒ»·ÇÒ¶½áµãµÄȨֵһ¶¨²»Ð¡ÓÚÏÂÒ»²ãÈÎÒ»½áµãµÄȨֵ ´ð°¸£ºA ½âÊÍ£º¹þ·òÂüÊ÷µÄ¹¹Ôì¹ý³ÌÊÇÿ´Î¶¼Ñ¡È¡È¨Öµ×îСµÄÊ÷×÷Ϊ×óÓÒ×ÓÊ÷¹¹ÔìÒ»¿ÃеĶþ²æÊ÷£¬ËùÒÔÊ÷ÖÐÒ»¶¨Ã»ÓжÈΪ1µÄ½áµã¡¢Á½¸öȨֵ×îСµÄ½áµãÒ»¶¨ÊÇÐֵܽáµã¡¢ÈÎÒ»·ÇÒ¶½áµãµÄȨֵһ¶¨²»Ð¡ÓÚÏÂÒ»²ãÈÎÒ»½áµãµÄȨֵ¡£ 2£®Ó¦ÓÃÌâ £¨1£©ÊÔÕÒ³öÂú×ãÏÂÁÐÌõ¼þµÄ¶þ²æÊ÷ ¢Ù ÏÈÐòÐòÁÐÓëºóÐòÐòÁÐÏàͬ ¢ÚÖÐÐòÐòÁÐÓëºóÐòÐòÁÐÏàͬ ¢Û ÏÈÐòÐòÁÐÓëÖÐÐòÐòÁÐÏàͬ ¢ÜÖÐÐòÐòÁÐÓë²ã´Î±éÀúÐòÁÐÏàͬ ´ð°¸£ºÏÈÐò±éÀú¶þ²æÊ÷µÄ˳ÐòÊÇ¡°¸ù¡ª×ó×ÓÊ÷¡ªÓÒ×ÓÊ÷¡±£¬ÖÐÐò±éÀú¡°×ó×ÓÊ÷¡ª¸ù¡ªÓÒ ×ÓÊ÷¡±£¬ºóÐò±éÀú˳ÐòÊÇ£º¡°×ó×ÓÊ÷¡ªÓÒ×ÓÊ÷¨D¸ù£¢£¬¸ù¾ÝÒÔÉÏÔÔòÓÐ ¢Ù »òΪ¿ÕÊ÷£¬»òΪֻÓиù½áµãµÄ¶þ²æÊ÷ ¢Ú »òΪ¿ÕÊ÷£¬»òΪÈÎÒ»½áµãÖÁ¶àÖ»ÓÐ×ó×ÓÊ÷µÄ¶þ²æÊ÷£® ¢Û »òΪ¿ÕÊ÷£¬»òΪÈÎÒ»½áµãÖÁ¶àÖ»ÓÐÓÒ×ÓÊ÷µÄ¶þ²æÊ÷£® ¢Ü »òΪ¿ÕÊ÷£¬»òΪÈÎÒ»½áµãÖÁ¶àÖ»ÓÐÓÒ×ÓÊ÷µÄ¶þ²æÊ÷ £¨2£©ÉèÒ»¿Ã¶þ²æÊ÷µÄÏÈÐòÐòÁУº A B D F C E G H £¬ÖÐÐòÐòÁУº B F D A G E H C ¢Ù»³öÕâ¿Ã¶þ²æÊ÷¡£ ¢Ú»³öÕâ¿Ã¶þ²æÊ÷µÄºóÐòÏßË÷Ê÷¡£ ¢Û½«Õâ¿Ã¶þ²æÊ÷ת»»³É¶ÔÓ¦µÄÊ÷£¨»òÉÁÖ£©¡£ ´ð°¸£º 35 B£®n C£®n + 1 D£®n + 2 A ABCB A D E C H B D F CEnullFDEF G GHGH¢Û ¢Ù ¢Ú £¨3£© ¼ÙÉèÓÃÓÚͨÐŵĵçÎĽöÓÉ8¸ö×Öĸ×é³É£¬×ÖĸÔÚµçÎÄÖгöÏֵįµÂÊ·Ö±ðΪ0.07£¬0.19£¬0.02£¬0.06£¬0.32£¬0.03£¬0.21£¬0.10¡£ ¢Ù ÊÔΪÕâ8¸ö×ÖĸÉè¼ÆºÕ·òÂü±àÂë¡£ ¢Ú ÊÔÉè¼ÆÁíÒ»ÖÖÓɶþ½øÖƱíʾµÄµÈ³¤±àÂë·½°¸¡£ ¢Û ¶ÔÓÚÉÏÊöʵÀý£¬±È½ÏÁ½ÖÖ·½°¸µÄÓÅȱµã¡£ ´ð°¸£º·½°¸1£»¹þ·òÂü±àÂë ÏȽ«¸ÅÂÊ·Å´ó100±¶£¬ÒÔ·½±ã¹¹Ôì¹þ·òÂüÊ÷¡£ w={7,19,2,6,32,3,21,10}£¬°´¹þ·òÂü¹æÔò£º¡¾[£¨2,3£©£¬6], (7,10)¡¿, ??19, 21, 32 £¨100£© £¨40£© £¨60£© 19 21 32 £¨28£© £¨17£© £¨11£© 7 10 6 £¨5£© 2 3 0 1 0 1 0 1 19 21 32 0 1 0 1 0 1 7 10 6 0 1 36 2 3 ·½°¸±È½Ï£º ×Ö Ä¸±àºÅ 1 2 3 4 5 6 ·½°¸1µÄWPL£½2(0.19+0.32+0.21)+4(0.07+0.06+0.10)+5(0.02+0.03)=1.44+0.92+0.25=2.61 ·½°¸2µÄWPL£½3(0.19+0.32+0.21+0.07+0.06+0.10+0.02+0.03)=3 ½áÂÛ£º¹þ·òÂü±àÂëÓÅÓڵȳ¤¶þ½øÖƱàÂë £¨4£©ÒÑÖªÏÂÁÐ×Ö·ûA¡¢B¡¢C¡¢D¡¢E¡¢F¡¢GµÄȨֵ·Ö±ðΪ3¡¢12¡¢7¡¢4¡¢2¡¢8£¬11£¬ÊÔÌîд³öÆä¶ÔÓ¦¹þ·òÂüÊ÷HTµÄ´æ´¢½á¹¹µÄ³õ̬ºÍÖÕ̬¡£ ´ð°¸£º ³õ̬: 1 2 3 4 5 6 7 8 9 10 11 12 13 weight 3 12 7 4 2 8 11 parent 0 0 0 0 0 0 0 0 0 0 0 0 0 lchild 0 0 0 0 0 0 0 0 0 0 0 0 0 rchild 0 0 0 0 0 0 0 0 0 0 0 0 0 7 8 ¶ÔÓ¦±àÂë 1100 00 11110 1110 10 11111 01 1101 ³öÏÖÆµÂÊ 0.07 0.19 0.02 0.06 0.32 0.03 0.21 0.10 ×Öĸ±àºÅ 1 2 3 4 5 6 7 8 ¶ÔÓ¦±àÂë 000 001 010 011 100 101 110 111 ³öÏÖÆµÂÊ 0.07 0.19 0.02 0.06 0.32 0.03 0.21 0.10 37 ÖÕ̬£º 1 2 3 4 5 6 7 8 9 10 11 12 13 3£®Ëã·¨Éè¼ÆÌâ ÒÔ¶þ²æÁ´±í×÷Ϊ¶þ²æÊ÷µÄ´æ´¢½á¹¹£¬±àдÒÔÏÂËã·¨£º £¨1£©Í³¼Æ¶þ²æÊ÷µÄÒ¶½áµã¸öÊý¡£ [ÌâÄ¿·ÖÎö]Èç¹û¶þ²æÊ÷Ϊ¿Õ£¬·µ»Ø0£¬Èç¹û¶þ²æÊ÷²»Îª¿ÕÇÒ×óÓÒ×ÓÊ÷Ϊ¿Õ£¬·µ»Ø1£¬Èç¹û¶þ²æÊ÷²»Îª¿Õ£¬ÇÒ×óÓÒ×ÓÊ÷²»Í¬Ê±Îª¿Õ£¬·µ»Ø×ó×ÓÊ÷ÖÐÒ¶×Ó½Úµã¸öÊý¼ÓÉÏÓÒ×ÓÊ÷ÖÐÒ¶×Ó½Úµã¸öÊý¡£ [Ëã·¨ÃèÊö] int LeafNodeCount(BiTree T) { } £¨2£©ÅбðÁ½¿ÃÊ÷ÊÇ·ñÏàµÈ¡£ if(T==NULL) return 0; //Èç¹ûÊÇ¿ÕÊ÷£¬ÔòÒ¶×Ó½áµã¸öÊýΪ0 return 1; //ÅжϽáµãÊÇ·ñÊÇÒ¶×Ó½áµã£¨×óº¢×ÓÓÒº¢×Ó¶¼Îª¿Õ£©£¬ÈôÊÇÔò·µ»Ø1 return LeafNodeCount(T->lchild)+LeafNodeCount(T->rchild); else if(T->lchild==NULL&&T->rchild==NULL) else weight 3 12 7 4 2 8 11 5 9 15 20 27 47 parent 8 12 10 9 8 10 11 9 11 12 13 13 0 lchild 0 0 0 0 0 0 0 5 4 3 9 2 11 rchild 0 0 0 0 0 0 0 1 8 6 7 10 12 38 [ÌâÄ¿·ÖÎö]ÏÈÅжϵ±Ç°½ÚµãÊÇ·ñÏàµÈ(ÐèÒª´¦ÀíΪ¿Õ¡¢ÊÇ·ñ¶¼Îª¿Õ¡¢ÊÇ·ñÏàµÈ)£¬Èç¹ûµ±Ç°½Úµã²»ÏàµÈ£¬Ö±½Ó·µ»ØÁ½¿ÃÊ÷²»ÏàµÈ;Èç¹ûµ±Ç°½ÚµãÏàµÈ£¬ÄÇô¾ÍµÝ¹éµÄÅжÏËûÃǵÄ×óÓÒº¢×ÓÊÇ·ñÏàµÈ¡£ [Ëã·¨ÃèÊö] int compareTree(TreeNode* tree1, TreeNode* tree2) //Ó÷ÖÖεķ½·¨×ö£¬±È½Ïµ±Ç°¸ù£¬È»ºó±È½Ï×ó×ÓÊ÷ºÍÓÒ×ÓÊ÷ {bool tree1IsNull = (tree1==NULL); bool tree2IsNull = (tree2==NULL); if(tree1IsNull != tree2IsNull) { return 1; } if(tree1IsNull && tree2IsNull) {//Èç¹ûÁ½¸ö¶¼ÊÇNULL£¬ÔòÏàµÈ return 0; }//Èç¹û¸ù½Úµã²»ÏàµÈ£¬Ö±½Ó·µ»Ø²»ÏàµÈ£¬·ñÔòµÄ»°£¬¿´¿´ËûÃǺ¢×ÓÏàµÈ²»ÏàµÈ if(tree1->c != tree2->c) { return 1; } return (compareTree(tree1->left,tree2->left)&compareTree(tree1->right,tree2->right)) (compareTree(tree1->left,tree2->right)&compareTree(tree1->right,tree2->left)); }//Ëã·¨½áÊø £¨3£©½»»»¶þ²æÊ÷ÿ¸ö½áµãµÄ×óº¢×ÓºÍÓÒº¢×Ó¡£ [ÌâÄ¿·ÖÎö]Èç¹ûij½áµã×óÓÒ×ÓÊ÷Ϊ¿Õ£¬·µ»Ø£¬·ñÔò½»»»¸Ã½áµã×óÓÒº¢×Ó£¬È»ºóµÝ¹é½»»»×óÓÒ×ÓÊ÷¡£ [Ëã·¨ÃèÊö] void ChangeLR(BiTree &T) { BiTree temp; if(T->lchild==NULL&&T->rchild==NULL) else { temp = T->lchild; T->lchild = T->rchild; T->rchild = temp; 39 return; } }//½»»»×óÓÒº¢×Ó ChangeLR(T->lchild); //µÝ¹é½»»»×ó×ÓÊ÷ ChangeLR(T->rchild); //µÝ¹é½»»»ÓÒ×ÓÊ÷ £¨4£©Éè¼Æ¶þ²æÊ÷µÄË«Ðò±éÀúËã·¨£¨Ë«Ðò±éÀúÊÇÖ¸¶ÔÓÚ¶þ²æÊ÷µÄÿһ¸ö½áµãÀ´Ëµ£¬ÏÈ·ÃÎÊÕâ¸ö½áµã£¬ÔÙ°´Ë«Ðò±éÀúËüµÄ×ó×ÓÊ÷£¬È»ºóÔÙÒ»´Î·ÃÎÊÕâ¸ö½áµã£¬½ÓÏÂÀ´°´Ë«Ðò±éÀúËüµÄÓÒ×ÓÊ÷£©¡£ [ÌâÄ¿·ÖÎö]ÈôÊ÷Ϊ¿Õ£¬·µ»Ø£»Èôij½áµãΪҶ×Ó½áµã£¬Ôò½öÊä³ö¸Ã½áµã£»·ñÔòÏÈÊä³ö¸Ã½áµã£¬µÝ¹é±éÀúÆä×ó×ÓÊ÷£¬ÔÙÊä³ö¸Ã½áµã£¬µÝ¹é±éÀúÆäÓÒ×ÓÊ÷¡£ [Ëã·¨ÃèÊö] void DoubleTraverse(BiTree T) { } £¨5£©¼ÆËã¶þ²æÊ÷×î´óµÄ¿í¶È£¨¶þ²æÊ÷µÄ×î´ó¿í¶ÈÊÇÖ¸¶þ²æÊ÷ËùÓвãÖнáµã¸öÊýµÄ×î´óÖµ£©¡£ [ÌâÄ¿·ÖÎö] Çó¶þ²æÊ÷¸ß¶ÈµÄËã·¨¼ûÉÏÌâ¡£Çó×î´ó¿í¶È¿É²ÉÓòã´Î±éÀúµÄ·½·¨£¬¼Çϸ÷²ã½áµãÊý£¬Ã¿²ã±éÀúÍê±Ï£¬Èô½áµãÊý´óÓÚÔÏÈ×î´ó¿í¶È£¬ÔòÐÞ¸Ä×î´ó¿í¶È¡£ [Ëã·¨ÃèÊö] int Width(BiTree bt)//Çó¶þ²æÊ÷btµÄ×î´ó¿í¶È {if (bt==null) return (0); //¿Õ¶þ²æÊ÷¿í¶ÈΪ0 else {BiTree Q[];//QÊǶÓÁУ¬ÔªËØÎª¶þ²æÊ÷½áµãÖ¸Õ룬ÈÝÁ¿×ã¹»´ó front=1;rear=1;last=1; //front¶ÓÍ·Ö¸Õë,rear¶ÓβָÕë,lastͬ²ã×îÓÒ½áµãÔÚ¶ÓÁÐÖеÄλÖà temp=0; maxw=0; //temp¼Ç¾Ö²¿¿í¶È, maxw¼Ç×î´ó¿í¶È Q[rear]=bt; //¸ù½áµãÈë¶ÓÁÐ while(front<=last) 40 if(T == NULL) { } cout< DoubleTraverse(T->lchild); //µÝ¹é±éÀú×ó×ÓÊ÷ cout< DoubleTraverse(T->rchild); //µÝ¹é±éÀúÓÒ×ÓÊ÷ return; cout< {p=Q[front++]; temp++; //ͬ²ãÔªËØÊý¼Ó1 if (p->lchild!=null) Q[++rear]=p->lchild; //×ó×ÓÅ®Èë¶Ó if (p->rchild!=null) Q[++rear]=p->rchild; //ÓÒ×ÓÅ®Èë¶Ó if (front>last) //Ò»²ã½áÊø£¬ {last=rear; if(temp>maxw) maxw=temp; //lastÖ¸Ïòϲã×îÓÒÔªËØ, ¸üе±Ç°×î´ó¿í¶È temp=0; }//if }//while return (maxw); }//½áÊøwidth £¨6£©Óð´²ã´Î˳Ðò±éÀú¶þ²æÊ÷µÄ·½·¨£¬Í³¼ÆÊ÷ÖоßÓжÈΪ1µÄ½áµãÊýÄ¿¡£ [ÌâÄ¿·ÖÎö] Èôij¸ö½áµã×ó×ÓÊ÷¿ÕÓÒ×ÓÊ÷·Ç¿Õ»òÕßÓÒ×ÓÊ÷¿Õ×ó×ÓÊ÷·Ç¿Õ£¬Ôò¸Ã½áµãΪ¶ÈΪ1µÄ½áµã [Ëã·¨ÃèÊö] int Level(BiTree bt) //²ã´Î±éÀú¶þ²æÊ÷£¬²¢Í³¼Æ¶ÈΪ1µÄ½áµãµÄ¸öÊý {int num=0; //numͳ¼Æ¶ÈΪ1µÄ½áµãµÄ¸öÊý if(bt){QueueInit(Q); QueueIn(Q,bt);//QÊÇÒÔ¶þ²æÊ÷½áµãÖ¸ÕëÎªÔªËØµÄ¶ÓÁÐ while(!QueueEmpty(Q)) {p=QueueOut(Q); cout< if(p->lchild && !p->rchild ||!p->lchild && p->rchild)num++; //¶ÈΪ1µÄ½áµã if(p->lchild) QueueIn(Q,p->lchild); //·Ç¿Õ×ó×ÓÅ®Èë¶Ó if(p->rchild) QueueIn(Q,p->rchild); //·Ç¿ÕÓÒ×ÓÅ®Èë¶Ó } // while(!QueueEmpty(Q)) }//if(bt) return(num); }//·µ»Ø¶ÈΪ1µÄ½áµãµÄ¸öÊý £¨7£©ÇóÈÎÒâ¶þ²æÊ÷ÖеÚÒ»Ìõ×µÄ·¾¶³¤¶È£¬²¢Êä³ö´Ë·¾¶Éϸ÷½áµãµÄÖµ¡£ [ÌâÄ¿·ÖÎö]ÒòΪºóÐò±éÀúÕ»Öб£Áôµ±Ç°½áµãµÄ׿ÏȵÄÐÅÏ¢£¬ÓÃÒ»±äÁ¿±£´æÕ»µÄ×î¸ßÕ»¶¥Ö¸Õ룬ÿµ±ÍËջʱ£¬Õ»¶¥Ö¸Õë¸ßÓÚ±£´æ×î¸ßÕ»¶¥Ö¸ÕëµÄֵʱ£¬Ôò½«¸ÃÕ»µ¹È븨ÖúÕ»ÖУ¬¸¨ÖúջʼÖÕ±£´æ×·¾¶³¤¶ÈÉϵĽáµã£¬Ö±ÖÁºóÐò±éÀúÍê±Ï£¬Ôò¸¨ÖúÕ»ÖÐÄÚÈݼ´ÎªËùÇó¡£ [Ëã·¨ÃèÊö] void LongestPath(BiTree bt)//Çó¶þ²æÊ÷ÖеĵÚÒ»Ìõ×·¾¶³¤¶È {BiTree p=bt,l[],s[]; 41 //l, sÊÇÕ»£¬ÔªËØÊǶþ²æÊ÷½áµãÖ¸Õ룬lÖб£Áôµ±Ç°×·¾¶ÖеĽáµã int i£¬top=0,tag[],longest=0; while(p || top>0) {while(p) {s[++top]=p£»tag[top]=0; p=p->Lc;} //ÑØ×ó·ÖÖ¦ÏòÏ if(tag[top]==1) //µ±Ç°½áµãµÄÓÒ·ÖÖ¦ÒѱéÀú {if(!s[top]->Lc && !s[top]->Rc) //Ö»Óе½Ò¶×Ó½áµãʱ£¬²Å²é¿´Â·¾¶³¤¶È if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;} //±£Áôµ±Ç°×·¾¶µ½lÕ»£¬¼Çס×î¸ßÕ»¶¥Ö¸Õ룬ÍËÕ» } else if(top>0) {tag[top]=1; p=s[top].Rc;} //ÑØÓÒ×Ó·ÖÖ¦ÏòÏ }//while(p!=null||top>0) }//½áÊøLongestPath £¨8£©Êä³ö¶þ²æÊ÷ÖдÓÿ¸öÒ¶×Ó½áµãµ½¸ù½áµãµÄ·¾¶¡£ [ÌâÄ¿·ÖÎö]²ÉÓÃÏÈÐò±éÀúµÄµÝ¹é·½·¨£¬µ±ÕÒµ½Ò¶×Ó½áµã*bʱ£¬ÓÉÓÚ*bÒ¶×Ó½áµãÉÐδÌí¼Óµ½pathÖУ¬Òò´ËÔÚÊä³ö·¾¶Ê±»¹ÐèÊä³öb->dataÖµ¡£ [Ëã·¨ÃèÊö] void AllPath(BTNode *b,ElemType path[],int pathlen) {int i; if (b!=NULL) {if (b->lchild==NULL && b->rchild==NULL) //*bΪҶ×Ó½áµã {cout << \µ½¸ù½áµã·¾¶:\ for (i=pathlen-1;i>=0;i--) cout << endl; } else {path[pathlen]=b->data; //½«µ±Ç°½áµã·ÅÈë·¾¶ÖÐ pathlen++; //·¾¶³¤¶ÈÔö1 AllPath(b->lchild,path,pathlen); //µÝ¹éɨÃè×ó×ÓÊ÷ AllPath(b->rchild,path,pathlen); //µÝ¹éɨÃèÓÒ×ÓÊ÷ pathlen--; //»Ö¸´»·¾³ } }// if (b!=NULL) }//Ëã·¨½áÊø 42 µÚ6Õ ͼ 1£®Ñ¡ÔñÌâ £¨1£©ÔÚÒ»¸öͼÖУ¬ËùÓж¥µãµÄ¶ÈÊýÖ®ºÍµÈÓÚͼµÄ±ßÊýµÄ£¨ £©±¶¡£ A£®1/2 B£®1 C£®2 D£®4 ´ð°¸£ºC £¨2£©ÔÚÒ»¸öÓÐÏòͼÖУ¬ËùÓж¥µãµÄÈë¶ÈÖ®ºÍµÈÓÚËùÓж¥µãµÄ³ö¶ÈÖ®ºÍµÄ£¨ £©±¶¡£ A£®1/2 B£®1 C£®2 D£®4 ´ð°¸£ºB ½âÊÍ£ºÓÐÏòͼËùÓж¥µãÈë¶ÈÖ®ºÍµÈÓÚËùÓж¥µã³ö¶ÈÖ®ºÍ¡£ £¨3£©¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼ×î¶àÓУ¨ £©Ìõ±ß¡£ A£®n B£®n(n-1) C£®n(n+1) D£®n2 ´ð°¸£ºB ½âÊÍ£ºÓÐÏòͼµÄ±ßÓз½ÏòÖ®·Ö£¬¼´Îª´Ón¸ö¶¥µãÖÐѡȡ2¸ö¶¥µãÓÐÐòÅÅÁУ¬½á¹ûΪn(n-1)¡£ £¨4£©n¸ö¶¥µãµÄÁ¬Í¨Í¼ÓÃÁÚ½Ó¾àÕó±íʾʱ£¬¸Ã¾àÕóÖÁÉÙÓУ¨ £©¸ö·ÇÁãÔªËØ¡£ A£®n B£®2(n-1) C£®n/2 D£®n2 ´ð°¸£ºB £¨5£©GÊÇÒ»¸ö·ÇÁ¬Í¨ÎÞÏòͼ£¬¹²ÓÐ28Ìõ±ß£¬Ôò¸ÃͼÖÁÉÙÓУ¨ £©¸ö¶¥µã¡£ A£®7 B£®8 C£®9 D£®10 ´ð°¸£ºC ½âÊÍ£º8¸ö¶¥µãµÄÎÞÏòͼ×î¶àÓÐ8*7/2=28Ìõ±ß£¬ÔÙÌí¼ÓÒ»¸öµã¼´¹¹³É·ÇÁ¬Í¨ÎÞÏòͼ£¬¹Ê ÖÁÉÙÓÐ9¸ö¶¥µã¡£ £¨6£©Èô´ÓÎÞÏòͼµÄÈÎÒâÒ»¸ö¶¥µã³ö·¢½øÐÐÒ»´ÎÉî¶ÈÓÅÏÈËÑË÷¿ÉÒÔ·ÃÎÊͼÖÐËùÓеĶ¥µã£¬Ôò¸Ãͼһ¶¨ÊÇ£¨ £©Í¼¡£ A£®·ÇÁ¬Í¨ B£®Á¬Í¨ C£®Ç¿Á¬Í¨ D£®ÓÐÏò ´ð°¸£ºB ½âÊÍ£º¼´´Ó¸ÃÎÞÏòͼÈÎÒâÒ»¸ö¶¥µã³ö·¢Óе½¸÷¸ö¶¥µãµÄ·¾¶£¬ËùÒÔ¸ÃÎÞÏòͼÊÇÁ¬Í¨Í¼¡£ £¨7£©ÏÂÃæ£¨ £©Ëã·¨ÊʺϹ¹ÔìÒ»¸ö³íÃÜͼGµÄ×îСÉú³ÉÊ÷¡£ A£® PrimËã·¨ B£®KruskalËã·¨ C£®FloydËã·¨ D£®DijkstraËã·¨ ´ð°¸£ºA ½âÊÍ£ºPrimËã·¨ÊʺϹ¹ÔìÒ»¸ö³íÃÜͼGµÄ×îСÉú³ÉÊ÷£¬KruskalËã·¨ÊʺϹ¹ÔìÒ»¸öÏ¡Êè ͼGµÄ×îСÉú³ÉÊ÷¡£ £¨8£©ÓÃÁÚ½Ó±í±íʾͼ½øÐйã¶ÈÓÅÏȱéÀúʱ£¬Í¨³£½èÖú£¨ £©À´ÊµÏÖËã·¨¡£ A£®Õ» B. ¶ÓÁÐ C. Ê÷ D£®Í¼ ´ð°¸£ºB ½âÊÍ£º¹ã¶ÈÓÅÏȱéÀúͨ³£½èÖú¶ÓÁÐÀ´ÊµÏÖËã·¨£¬Éî¶ÈÓÅÏȱéÀúͨ³£½èÖúÕ»À´ÊµÏÖËã·¨¡£ 43 £¨9£©ÓÃÁÚ½Ó±í±íʾͼ½øÐÐÉî¶ÈÓÅÏȱéÀúʱ£¬Í¨³£½èÖú£¨ £©À´ÊµÏÖËã·¨¡£ A£®Õ» B. ¶ÓÁÐ C. Ê÷ D£®Í¼ ´ð°¸£ºA ½âÊÍ£º¹ã¶ÈÓÅÏȱéÀúͨ³£½èÖú¶ÓÁÐÀ´ÊµÏÖËã·¨£¬Éî¶ÈÓÅÏȱéÀúͨ³£½èÖúÕ»À´ÊµÏÖËã·¨¡£ £¨10£©Éî¶ÈÓÅÏȱéÀúÀàËÆÓÚ¶þ²æÊ÷µÄ£¨ £©¡£ A£®ÏÈÐò±éÀú B£®ÖÐÐò±éÀú C£®ºóÐò±éÀú D£®²ã´Î±éÀú ´ð°¸£ºA £¨11£©¹ã¶ÈÓÅÏȱéÀúÀàËÆÓÚ¶þ²æÊ÷µÄ£¨ £©¡£ A£®ÏÈÐò±éÀú B£®ÖÐÐò±éÀú C£®ºóÐò±éÀú D£®²ã´Î±éÀú ´ð°¸£ºD £¨12£©Í¼µÄBFSÉú³ÉÊ÷µÄÊ÷¸ß±ÈDFSÉú³ÉÊ÷µÄÊ÷¸ß£¨ £©¡£ A£®Ð¡ B£®ÏàµÈ C£®Ð¡»òÏàµÈ D£®´ó»òÏàµÈ ´ð°¸£ºC ½âÊÍ£º¶ÔÓÚÒ»Ð©ÌØÊâµÄͼ£¬±ÈÈçÖ»ÓÐÒ»¸ö¶¥µãµÄͼ£¬ÆäBFSÉú³ÉÊ÷µÄÊ÷¸ßºÍDFSÉú ³ÉÊ÷µÄÊ÷¸ßÏàµÈ¡£Ò»°ãµÄͼ£¬¸ù¾ÝͼµÄBFSÉú³ÉÊ÷ºÍDFSÊ÷µÄË㷨˼Ï룬BFSÉú³ÉÊ÷µÄÊ÷¸ß±ÈDFSÉú³ÉÊ÷µÄÊ÷¸ßС¡£ £¨13£©ÒÑ֪ͼµÄÁÚ½Ó¾ØÕóÈçͼ6.30Ëùʾ£¬Ôò´Ó¶¥µãv0³ö·¢°´Éî¶ÈÓÅÏȱéÀúµÄ½á¹ûÊÇ£¨ £©¡£ ͼ6.30 ÁÚ½Ó¾ØÕó £¨14£©ÒÑ֪ͼµÄÁÚ½Ó±íÈçͼ6.31Ëùʾ£¬Ôò´Ó¶¥µãv0³ö·¢°´¹ã¶ÈÓÅÏȱéÀúµÄ½á¹ûÊÇ£¨ £©£¬°´Éî¶ÈÓÅÏȱéÀúµÄ½á¹ûÊÇ£¨ £©¡£ ͼ6.31 ÁÚ½Ó±í A£®0 1 3 2 ´ð°¸£ºD¡¢D B£®0 2 3 1 C£®0 3 2 1 D£®0 1 2 3 44 £¨15£©ÏÂÃæ£¨ £©·½·¨¿ÉÒÔÅжϳöÒ»¸öÓÐÏòͼÊÇ·ñÓл·¡£ A£®Éî¶ÈÓÅÏȱéÀú B£®ÍØÆËÅÅÐò C£®Çó×î¶Ì·¾¶ D£®Ç󹨼ü·¾¶ ´ð°¸£ºB 2£®Ó¦ÓÃÌâ £¨1£©ÒÑ֪ͼ6.32ËùʾµÄÓÐÏòͼ£¬Çë¸ø³ö£º ¢Ù ÿ¸ö¶¥µãµÄÈë¶ÈºÍ³ö¶È£» ¢Ú ÁÚ½Ó¾ØÕó£» ¢Û ÁÚ½Ó±í£» ¢Ü ÄæÁÚ½Ó±í¡£ ´ð°¸£º ͼ6.32 ÓÐÏòͼ ͼ6.33 ÎÞÏòÍø £¨2£©ÒÑÖªÈçͼ6.33ËùʾµÄÎÞÏòÍø£¬Çë¸ø³ö£º ¢Ù ÁÚ½Ó¾ØÕó£» ¢Ú ÁÚ½Ó±í£» ¢Û ×îСÉú³ÉÊ÷ ´ð°¸£º 45 ¢Ù ¢Û ?? ? ?4 ? 3 ??? ??? ??? ?????43? ?55 5 ? 5 55?9?7??6??5?54?9 ? 7?3???? ? 63?2??? ? 5?2?6????? 5 ? ?4??????6????? ¢Ú a b c d e f g ¡ú ¡ú ¡ú ¡ú ¡ú ¡ú ¡ú b a a b b d d 4 4 3 5 9 6 5 ¡ú ¡ú ¡ú ¡ú ¡ú ¡ú ¡ú c c b c d e f 3 5 5 5 7 3 2 ¡ú ¡ú ¡ú ¡ú ¡ú ¡ú d d e f g h 5 ¡ú e 9 5 ¡ú h 5 7 ¡ú f 6 ¡ú 3 2 6 g 5 ¡ú h 4 £¨3£©ÒÑ֪ͼµÄÁÚ½Ó¾ØÕóÈçͼ6.34Ëùʾ¡£ÊÔ·Ö±ð»³ö×Ô¶¥µã1³ö·¢½øÐбéÀúËùµÃµÄÉî¶ÈÓÅÏÈÉú³ÉÊ÷ºÍ¹ã¶ÈÓÅÏÈÉú³ÉÊ÷¡£ £¨4£©ÓÐÏòÍøÈçͼ6.35Ëùʾ£¬ÊÔÓõϽÜË¹ÌØÀËã·¨Çó³ö´Ó¶¥µãaµ½ÆäËû¸÷¶¥µã¼äµÄ×î¶Ì·¾¶£¬Íê³É±í6.9¡£ ͼ6.28 ÁÚ½Ó¾ØÕó 46 ±í6.9 D ÖÕµã b c d e f g i=1 15 (a,b) 2 (a,c) 12 (a,d) ¡Þ ¡Þ ¡Þ S Öյ㼯 {a,c} ͼ6.34 ÁÚ½Ó¾ØÕó ͼ6.35 ÓÐÏòÍø i=2 15 (a,b) 12 (a,d) 10 (a,c,e) 6 (a,c,f) ¡Þ i=3 15 (a,b) 11 (a,c,f,d) 10 (a,c,e) 16 (a,c,f,g) i=4 15 (a,b) 11 (a,c,f,d) 16 (a,c,f,g) {a,c,f,e,d} i=5 15 (a,b) 14 (a,c,f,d,g) {a,c,f,e,d,g} i=6 15 (a,b) {a,c,f} {a,c,f,e} {a,c,f,e,d,g,b} £¨5£©ÊÔ¶Ôͼ6.36ËùʾµÄAOE-Íø£º ¢Ù ÇóÕâ¸ö¹¤³Ì×îÔç¿ÉÄÜÔÚʲôʱ ¼ä½áÊø£» ¢Ú Çóÿ¸ö»î¶¯µÄ×îÔ翪ʼʱ¼äºÍ ×î³Ù¿ªÊ¼Ê±¼ä£» ¢Û È·¶¨ÄÄЩ»î¶¯Êǹؼü»î¶¯ 47 ͼ6.36 AOE-Íø ´ð°¸£º°´ÍØÆËÓÐÐòµÄ˳Ðò¼ÆËã¸÷¸ö¶¥µãµÄ×îÔç¿ÉÄÜ¿ªÊ¼Ê±¼äVeºÍ×î³ÙÔÊÐí¿ªÊ¼Ê±¼äVl¡£È»ºóÔÙ¼ÆËã¸÷¸ö»î¶¯µÄ×îÔç¿ÉÄÜ¿ªÊ¼Ê±¼äeºÍ×î³ÙÔÊÐí¿ªÊ¼Ê±¼äl£¬¸ù¾Ýl - e = 0? À´È·¶¨¹Ø¼ü»î¶¯£¬´Ó¶øÈ·¶¨¹Ø¼ü·¾¶¡£ 1 ? Ve 0 Vl 0 2 ? 19 19 3 ? 15 15 4 ? 29 37 5 ? 38 38 6 ? 43 43 <5, 6> 38 38 0 <1, 2> <1, 3> <3, 2> <2, 4> <2, 5> <3, 5> <4, 6> e 0 0 15 19 19 15 29 l 17 0 15 27 19 27 37 -e 17 0 0 8 0 12 8 ´Ë¹¤³Ì×îÔçÍê³Éʱ¼äΪ43¡£¹Ø¼ü·¾¶Îª<1, 3><3, 2><2, 5><5, 6> 3£®Ëã·¨Éè¼ÆÌâ £¨1£©·Ö±ðÒÔÁÚ½Ó¾ØÕóºÍÁÚ½Ó±í×÷Ϊ´æ´¢½á¹¹£¬ÊµÏÖÒÔÏÂͼµÄ»ù±¾²Ù×÷£º ¢Ù Ôö¼ÓÒ»¸öж¥µãv£¬InsertVex(G, v)£» ¢Ú ɾ³ý¶¥µãv¼°ÆäÏà¹ØµÄ±ß£¬DeleteVex(G, v); ¢Û Ôö¼ÓÒ»Ìõ±ß ¼ÙÉèͼGΪÓÐÏòÎÞȨͼ£¬ÒÔÁÚ½Ó¾ØÕó×÷Ϊ´æ´¢½á¹¹ËĸöËã·¨·Ö±ðÈçÏ£º ¢Ù Ôö¼ÓÒ»¸öж¥µãv Status Insert_Vex(MGraph &G, char v)//ÔÚÁÚ½Ó¾ØÕó±íʾµÄͼGÉϲåÈë¶¥µãv { if(G.vexnum+1)>MAX_VERTEX_NUM return INFEASIBLE; G.vexs[++G.vexnum]=v; return OK; }//Insert_Vex ¢Ú ɾ³ý¶¥µãv¼°ÆäÏà¹ØµÄ±ß£¬ Status Delete_Vex(MGraph &G,char v)//ÔÚÁÚ½Ó¾ØÕó±íʾµÄͼGÉÏɾ³ý¶¥µãv { n=G.vexnum; if((m=LocateVex(G,v))<0) return ERROR; G.vexs[m]<->G.vexs[n]; //½«´ýɾ³ý¶¥µã½»»»µ½×îºóÒ»¸ö¶¥µã 48 for(i=0;i G.arcs[m]=G.arcs[n]; G.arcs[m]=G.arcs[n]; //½«±ßµÄ¹ØÏµËæÖ®½»»» } G.arcs[m][m].adj=0; G.vexnum--; return OK; }//Delete_Vex ·ÖÎö:Èç¹û²»°Ñ´ýɾ³ý¶¥µã½»»»µ½×îºóÒ»¸ö¶¥µãµÄ»°,Ëã·¨½«»á±È½Ï¸´ÔÓ,¶ø°éËæ×Å´óÁ¿ÔªËصÄÒÆ¶¯,ʱ¼ä¸´ÔÓ¶ÈÒ²»á´ó´óÔö¼Ó¡£ ¢Û Ôö¼ÓÒ»Ìõ±ß Status Insert_Arc(MGraph &G,char v,char w)//ÔÚÁÚ½Ó¾ØÕó±íʾµÄͼGÉϲåÈë±ß(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; if(i==j) return ERROR; if(!G.arcs[j].adj) { G.arcs[j].adj=1; G.arcnum++; } return OK; }//Insert_Arc ¢Ü ɾ³ýÒ»Ìõ±ß Status Delete_Arc(MGraph &G,char v,char w)//ÔÚÁÚ½Ó¾ØÕó±íʾµÄͼGÉÏɾ³ý±ß(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; if(G.arcs[j].adj) { G.arcs[j].adj=0; G.arcnum--; } return OK; }//Delete_Arc 49 ÒÔÁÚ½Ó±í×÷Ϊ´æ´¢½á¹¹£¬±¾ÌâÖ»¸ø³öInsert_ArcËã·¨.ÆäÓàËã·¨ÀàËÆ¡£ Status Insert_Arc(ALGraph &G,char v,char w)//ÔÚÁÚ½Ó±í±íʾµÄͼGÉϲåÈë±ß(v,w) { if((i=LocateVex(G,v))<0) return ERROR; if((j=LocateVex(G,w))<0) return ERROR; p=new ArcNode; p->adjvex=j;p->nextarc=NULL; if(!G.vertices.firstarc) G.vertices.firstarc=p; else { for(q=G.vertices.firstarc;q->q->nextarc;q=q->nextarc) if(q->adjvex==j) return ERROR; //±ßÒѾ´æÔÚ q->nextarc=p; } G.arcnum++; return OK; }//Insert_Arc £¨2£©Ò»¸öÁ¬Í¨Í¼²ÉÓÃÁÚ½Ó±í×÷Ϊ´æ´¢½á¹¹£¬Éè¼ÆÒ»¸öËã·¨£¬ÊµÏÖ´Ó¶¥µãv³ö·¢µÄÉî¶ÈÓÅÏȱéÀúµÄ·ÇµÝ¹é¹ý³Ì¡£ [Ëã·¨ÃèÊö] Void DFSn(Graph G,int v) { //´ÓµÚv¸ö¶¥µã³ö·¢·ÇµÝ¹éʵÏÖÉî¶ÈÓÅÏȱéÀúͼG Stack s; SetEmpty(s); Push(s,v); While(!StackEmpty(s)) { //Õ»¿ÕʱµÚv¸ö¶¥µãËùÔÚµÄÁ¬Í¨·ÖÁ¿ÒѱéÀúÍê Pop(s,k); If(!visited[k]) { { } 50 visited[k]=TRUE; VisitFunc(k); //·ÃÎʵÚk¸ö¶¥µã //½«µÚk¸ö¶¥µãµÄËùÓÐÁÚ½Óµã½øÕ» if(!visited[w]&&w!=GetTop(s)) Push(s,w); //ͼÖÐÓл·Ê±w==GetTop(s) for(w=FirstAdjVex(G,k);w;w=NextAdjVex(G,k,w))