(ÓŸ¨×ÊÔ´)ºÚÁú½­Ê¡¹þ¶û±õÊи߶þÊýѧÉÏѧÆÚÆÚÄ©¿¼ÊÔÊÔÌâ ÎÄ ÏÂÔØ±¾ÎÄ

ÓÅÖÊÎĵµ

20. £¨±¾Ð¡ÌâÂú·Ö12·Ö£©

Èçͼ£¬ÈýÀâÖùABC£­A1B1C1µÄ²àÀâAA1¡Íµ×ÃæABC£¬¡ÏACB£½90¡ã£¬EÊÇÀâCC1µÄÖе㣬AC£½BC£½1£¬AA1£½2.

£¨1£©ÇóÖ¤£ºÆ½ÃæAB1E¡ÍÆ½ÃæAA1B1B£» £¨2£©ÇóÈýÀâ×¶C£­AB1EµÄ¸ß£®

21. £¨±¾Ð¡ÌâÂú·Ö12·Ö£©

ÒÑÖªÍÖÔ²CµÄ¶Ô³ÆÖÐÐÄΪԭµãO£¬½¹µãÔÚxÖáÉÏ£¬×óÓÒ½¹µã·Ö±ðΪF1ºÍF2£¬ÇÒ|F1F2|?2£¬

3µã(1,)ÔÚ¸ÃÍÖÔ²ÉÏ£®

2£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»

£¨2£©¹ýF1µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬Èô?AF2BµÄÃæ»ýΪ

ÐÄÇÒÓëÖ±ÏßlÏàÇÐÔ²µÄ·½³Ì£®

122£¬ÇóÒÔF2ΪԲ7ÓÅÖÊÎĵµ

ÓÅÖÊÎĵµ

22. £¨±¾Ð¡ÌâÂú·Ö12·Ö£©

ÒÑÖªÅ×ÎïÏßC£ºy£½mx(m>0)£¬½¹µãΪF£¬Ö±Ïß2x£­y£«2£½0½»Å×ÎïÏßCÓÚA£¬BÁ½µã£¬

2

PÊÇÏß¶ÎABµÄÖе㣬¹ýP×÷xÖáµÄ´¹Ïß½»Å×ÎïÏßCÓÚµãQ£¬¡÷ABQÊÇÒÔQΪֱ½Ç¶¥µãµÄÖ±

½ÇÈý½ÇÐΣ¬ÇóÅ×ÎïÏߵķ½³Ì.

ÓÅÖÊÎĵµ

ÓÅÖÊÎĵµ

Ò»¡¢Ñ¡ÔñÌ⣺

CCBBC ACBDB AB ¶þ¡¢Ìî¿ÕÌ⣺

n2?n?413. 3?5i 14. 15. [?2,?1] 16. ¢Ù¢Ú¢Ü

2Èý¡¢½â´ðÌ⣺ 17.½â£º£¨1£©a?72

£¨2£©A×飺 B×飺

33547695112??????????3.45 2202202202202207993611721354159??????????5.6 21802180218021802180 Ôò1000ÃûÓοÍÏû·ÑµÄƽ¾ùÊýΪ3.45?0.1?5.6?0.9?5.285 18.½â£º£¨1£©Ö¤Ã÷£ºÈ¡ABÖеãO£¬Á¬½áEO£¬DO£®

ÒòΪEB?EA£¬ËùÒÔEO?AB£® ÒòΪËıßÐÎABCDΪֱ½ÇÌÝÐΣ¬AB?2CD?2BC£¬AB?BC£¬ ËùÒÔËıßÐÎOBCDΪÕý·½ÐΣ¬ËùÒÔAB?OD£® ËùÒÔAB?Æ½ÃæEOD£® ËùÒÔ AB?ED£® £¨2£©ÓÉEO?AB£¬ÃæABE?ÃæABCDÒ×µÃEO?ABCD

ËùÒÔ£¬VC?BDE?VE?CBD?11?(2?1?1)?1? 36£¨3£©½â£ºÁ¬½ÓAC¡¢BD½»ÓÚµã£¬ÃæACE?ÃæFBD?FM. ÒòΪEC// Æ½ÃæFBD£¬ËùÒÔEC//FM£®

ÔÚÌÝÐÎABCDÖУ¬ÓÐ?DMCÓë?BMAÏàËÆ£¬¿ÉµÃMA?2MC,?AF?2FE ËùÒÔ£¬EF?12EA? 3319.½â£º£¨1£©Éè³£ºÈ̼ËáÒûÁÏ·ÊÅÖµÄѧÉúÓÐxÈË£¬

·ÊÅÖ ²»ÅÖ ºÏ¼Æ ³£ºÈ 6 4 10 2x?34?,x?6 3015ºÏ¼Æ 8 22 30 ²»³£ºÈ 2 18 20 30(6?18?2?4)2?8.522?7.879 £¨2£©ÓÉÒÑÖªÊý¾Ý¿ÉÇóµÃ£ºK?10?20?8?22 Òò´ËÓÐ99.5£¥µÄ°ÑÎÕÈÏΪ·ÊÅÖÓë³£ºÈ̼ËáÒûÁÏÓйء£

ÓÅÖÊÎĵµ

ÓÅÖÊÎĵµ

£¨2£©ÉèÆäËû¹¤×÷ÈËԱΪ±ûºÍ¶¡£¬4ÈË·Ö×éµÄËùÓÐÇé¿öÈçϱí С×é ÊÕ¼¯Êý¾Ý ´¦ÀíÊý¾Ý 1 ¼×ÒÒ ±û¶¡ 2 ¼×±û ÒÒ¶¡ 3 ¼×¶¡ ÒÒ±û 4 ÒÒ±û ¼×¶¡ 5 ÒÒ¶¡ ¼×±û 6 ±û¶¡ ¼×ÒÒ ·Ö×éµÄÇé¿ö×ÜÓÐ6ÖУ¬¹¤×÷ÈËÔ±¼×¸ºÔðÊÕ¼¯Êý¾ÝÇÒ¹¤×÷ÈËÔ±ÒÒ¸ºÔð´¦ÀíÊý¾ÝÕ¼Á½ÖÖ£¬ ËùÒÔ¹¤×÷ÈËÔ±¼×¸ºÔðÊÕ¼¯Êý¾ÝÇÒ¹¤×÷ÈËÔ±´¦ÀíÊý¾ÝµÄ¸ÅÂÊÊÇP?20.Ö¤Ã÷£ºÈ¡AB1µÄÖеãG£¬Á¬½ÓEG£¬FG£¬

1

¡ßF¡¢G·Ö±ðÊÇAB¡¢AB1µÄÖе㣬¡àFG¡ÎBB1£¬FG£½BB1.¡ßEΪ²àÀâCC1µÄÖе㣬

2¡àFG¡ÎEC£¬FG£½EC£¬¡àËıßÐÎFGECÊÇÆ½ÐÐËıßÐΣ¬¡àCF¡Î EG£¬ ¡ßCF¡ÍÆ½ÃæAA1B1B £¬¡àEG¡ÍÆ½ÃæAA1B1B

ÓÖEG?Æ½ÃæAB1E£¬¡àÆ½ÃæAB1E¡ÍÆ½ÃæAA1B1B ¡­¡­ 6·Ö (2)¡ßÈýÀâÖùABC£­A1B1C1µÄ²àÀâAA1¡Íµ×ÃæABC£¬¡àBB1¡ÍÆ½ÃæABC. ÓÖAC?Æ½ÃæABC£¬¡àAC¡ÍBB1£¬¡ß¡ÏACB£½90¡ã£¬¡àAC¡ÍBC£¬ ¡ßBB1¡ÉBC£½B£¬¡àAC¡ÍÆ½ÃæEB1C£¬¡àAC¡ÍCB1£¬ 11?11?¡àVA£­EB1C£½S¡÷EB1C¡¤AC£½¡Á?¡Á1¡Á1?¡Á1£½. 33?26?¡ßAE£½EB1£½2£¬AB1£½6£¬¡àS¡÷AB1E£½3

£¬¡ßVC£­AB1E£½VA£­EB1C£¬ 2

21?¡£ 633VC£­AB1E3

¡àÈýÀâ×¶C£­AB1EÔÚµ×ÃæAB1EÉϵĸßΪ£½.

S¡÷AB1E3

x2y2??1321.£¨1£©ÍÖÔ²CµÄ·½³ÌΪ4

£¨2£©¢Ùµ±Ö±Ïßl¡ÍxÖáʱ£¬¿ÉµÃA£¨-1£¬-

33£©£¬B£¨-1£¬£©£¬?AF2BµÄÃæ»ýΪ3£¬²»ºÏÌâ22Ò⣮

¢Úµ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©£®´úÈëÍÖÔ²·½³ÌµÃ£º

(3?4k2)x2?8k2x?4k2?12?0£¬ÏÔÈ»?£¾0³ÉÁ¢£¬ÉèA(x1,y1)£¬B(x2,y2)£¬Ôò

8k28k2?1212(k2?1)£¬x1?x2?£¬¿ÉµÃ|AB|= x1?x2??3?4k23?4k23?4k22112|k|k?1122FÓÖÔ²F2µÄ°ë¾¶r=£¬¡àABµÄÃæ»ý=|AB| r==£¬»¯¼ò?22221?k73?4k2|k|ÓÅÖÊÎĵµ