自动化英语 下载本文

of miniature cutting edges. Generally, grinding is considered to be a finishing process that is usually used for obtaining high-dimensional accuracy and better surface finish. Grinding can be performed on flat, cylindrical, or even internal surfaces by employing specialized machine tools, which are referred to as grinding machines.Obviously, grinding machines differ in construction as well as capabilities, and the type to be employed is determined mainly by the geometrical shape and nature of the surface to be ground, e.g., cylindrical surfaces are ground on cylindrical grinding machines.

磨削是通过采用旋转磨轮去除金属的制造工艺。磨轮用非常大量的微型切削刃模仿铣刀进行切削。一般而言,磨削被认为是一种通常用于获得高尺寸精度和较好表面光洁度的精加工作业。磨削通过采用被称为磨床的特殊机床能在平面、圆柱面甚至内表面上进行。显然,磨床根据结构和功能的不同有所区别,使用何种形式的磨床主要取决于被磨削表面的几何形状和物理性质。例如,圆柱面在外圆磨床上磨削。

? Grinding Wheels 砂轮

Grinding wheels are composed of abrasive grains having similar size and a binder. The actual grinding process is performed by the abrasive grains. Pores between the grains within the binder enable the grains to act as separate single-point cutting tools.These pores also provide space for the generated chips, thus preventing the wheel from clogging. In addition, pores assist the easy flow of coolants to enable efficient and prompt removal of the heat generated during the grinding process.

砂轮由具有相近尺寸的磨料颗粒和粘合剂组成。实际磨削作业由磨粒完成。在粘合剂中磨粒之间的孔隙使磨粒能象独立的单刃切削刀具一样工作。这些孔隙同时还为产生的切屑提供空间以防砂轮堵塞。另外孔隙帮助冷却液容易流动,从而使在磨削作业中产生的热量能有效而迅速地散发。

Grinding wheels are identified based on their shape and size, kind of abrasive, grain size, binder, grade (hardness), and structure.

砂轮根据它们的形状和尺寸、磨料的类型、磨粒的大小、粘合剂、等级(硬度)和结构组织来分类。 Grain size of abrasive used. As you may expect, the grain size of the abrasive particles of the wheel plays a fundamental role in determining the quality of ground surface obtained. The finer the grains, the smoother the ground surface is. Therefore, coarse-grained grinding wheels are used for roughing operations, whereas fine-grained wheels are employed in final finishing operations.

所用磨粒的尺寸:正如料想的那样,砂轮磨粒的尺寸对决定所得磨削表面的质量起着根本的作用。磨粒越细,磨削表面越光滑。所以,粗粒砂轮用于粗加工,而细粒砂轮则用于最后精加工。

The grade of the bond. The grade of the bond is actually an indication of the resistance of the bond to pulling off the abrasive grains from the grinding wheel. Generally, wheels having hard grades are used for grinding soft materials and vice versa. If a hard-grade wheel were to be used for grinding a hard material, the dull grains would not be pulled off from the bond quickly enough, thus impeding the self-dressing process of the surface of the wheel and finally resulting in clogging of the wheel and burns on the ground surface. In fact, the cutting properties of all grinding wheels must be restored periodically by dressing with a cemented carbide roller or a diamond tool to give the wheel the exact desired shape and remove all worn abrasive grains.

粘结体的等级:粘结体的等级实际上是其抵抗将磨粒从砂轮上拉脱的指标。一般而言,具有较硬等级的砂轮用于磨削较软材料,反之亦然。如果较硬等级的砂轮用于磨削较硬材料,磨钝的磨粒将不能足够快地脱离粘结体,这会妨碍砂轮表面的自修复,最终导致砂轮的堵塞并在被磨表面留下灼斑。实际上,所有砂轮的磨削性能都必须定期地通过使用硬质合金滚轮或金刚石修整器修整而被恢复,以求很准确地把砂轮加工成要求的形状,并去除已磨钝的磨粒。

第十一单元

? The Lathe and Its Construction

车床及其结构

A lathe is a machine tool used primarily for producing surfaces of revolution and flat edges.Based on their purpose, construction, number of tools that can simultaneously be mounted, and degree of automation, lathes-or, more accurately, lathe-type machine tools can be classified as follows:

25

车床是主要用于生成旋转表面和平整边缘的机床。根据它们的使用目的、结构、能同时被安装刀具的数量和自动化的程度,车床—或更确切地说是车床类的机床,可以被分成以下几类: (1)Engine lathes (2)Toolroom lathes (3)Turret lathes

(4)Vertical turning and boring mills (5)Automatic lathes

(6)Special-purpose lathes (1)普通车床 (2)万能车床 (3)转塔车床 (4)立式车床 (5)自动车床 (6)特殊车床

In spite of that diversity of lathe-type machine tools, they all have common features with respect to construction and principle of operation. These features can best be illustrated by considering the commonly used representative type, the engine lathe. Following is a description of each of the main elements of an engine lathe, which is shown in Fig.11.1. 虽然车床类的机床多种多样,但它们在结构和操作原理上具有共同特性。这些特性可以通过普通车床这一最常用的代表性类型来最好地说明。下面是关于图11.1所示普通车床的主要部分的描述。 Lathe bed. The lathe bed is the main frame, involving a horizontal beam on two vertical supports. It is usually made of grey or nodular cast iron to damp vibrations and is made by casting. It has guideways to allow the carriage to slide easily lengthwise. The height of the lathe bed should be appropriate to enable the technician to do his or her job easily and comfortably.

车床床身:车床床身是包含了在两个垂直支柱上水平横梁的主骨架。为减振它一般由灰铸铁或球墨铸铁铸造而成。它上面有能让大拖板轻易纵向滑动的导轨。车床床身的高度应适当以让技师容易而舒适地工作。

Headstock. The headstock is fixed at the left hand side of the lathe bed and includes the spindle whose axis is parallel to the guideways (the slide surface of the bed). The spindle is driven through the gearbox, which is housed within the headstock. The function of the gearbox is to provide a number of different spindle speeds (usually 6 up to 18 speeds). Some modern lathes have headstocks with infinitely variable spindle speeds, which employ frictional ,electrical ,or hydraulic drives.

主轴箱:主轴箱固定在车床床身的左侧,它包括轴线平行于导轨的主轴。主轴通过装在主轴箱内的齿轮箱驱动。齿轮箱的功能是给主轴提供若干不同的速度(通常是6到18速)。有些现代车床具有采用摩擦、电力或液压驱动的无级调速主轴箱。 The spindle is always hollow, i. e., it has a through hole extending lengthwise. Bar stocks can be fed through that hole if continuous production is adopted. Also, that hole has a tapered surface to allow mounting a plain lathe center. The outer surface of the spindle is threaded to allow mounting of a chuck, a face plate, or the like.

主轴往往是中空的,即纵向有一通孔。如果采取连续生产,棒料能通过此孔进给。同时,此孔为锥形表面可以安装普通车床顶尖。主轴外表面是螺纹可以安装卡盘、花盘或类似的装置。

Tailstock. The tailstock assembly consists basically of three parts, its lower base, an intermediate part, and the quill. The lower base is a casting that can slide on the lathe bed along the guideways, and it has a clamping device to enable locking the entire tailstock at any desired location, depending upon the length of the workpiece. The intermediate part is a casting that can be moved transversely to enable alignment of the axis of the tailstock with that of the headstock. The third part, the quill, is a hardened steel tube, which can be moved longitudinally in and out of the intermediate part as required. This is achieved through the use of a handwheel and a screw, around which a nut fixed to the quill is engaged. The hole in the open side of the quill is tapered to enable mounting of lathe centers or other tools like

26

twist drills or boring bars. The quill can be locked at any point along its travel path by means of a clamping device.

尾架:尾架总成基本包括三部分,底座、尾架体和套筒轴。底座是能在车床床身上沿导轨滑动的铸件,它有一定位装置能让整个尾架根据工件长度锁定在任何需要位置。尾架体为一能横向运动的铸件,它可以调整尾架轴线与主轴箱轴线成一直线。第三部分,套筒轴是一淬硬钢管,它能根据需要在尾架体中纵向进出移动。这通过使用手轮和螺杆来达到,与螺杆啮合的是一固接在套筒轴上的螺母。套筒轴开口端的孔是锥形的,能安装车床顶尖或诸如麻花钻和镗杆之类的工具。套筒轴通过定位装置能沿着它的移动路径被锁定在任何点。

第十二单元

? Drilling and Drills

钻削和钻头

Drilling involves producing through or blind holes in a workpiece by forcing a tool, which rotates around its axis, against the workpiece.Consequently, the range of cutting from that axis of rotation is equal to the radius of the required hole. In practice, two symmetrical cutting edges that rotate about the same axis are employed.

钻削就是通过迫使绕自身轴线旋转的切削刀具进入工件而在其上生成通孔或盲孔。因此,从旋转轴线开始的切削范围等于所需孔的半径。实际上,使用的是两条围绕相同轴线旋转的对称切削刃。

Drilling operations can be carried out by using either hand drills or drilling machines. The latter differ in size and construction. Nevertheless, the tool always rotates around its axis while the workpiece is kept firmly fixed. This is contrary to drilling on a lathe. 钻削作业既能采用手钻也能采用钻床来实现。钻床在尺寸和结构上虽有差别,然而始终都是切削刀具围绕自身轴线旋转、工件稳固定位的形式。这正好与在车床上钻孔相反。

Cutting Tool for Drilling Operation 用于钻削作业的切削刀具

In drilling operations, a cylindrical rotary-end cutting tool, called a drill, is employed. The drill can have either one or more cutting edges and corresponding flutes, which can be straight or helical.The function of the flutes is to provide outlet passages for the chips generated during the drilling operation and also to allow lubricants and coolants to reach the cutting edges and the surface being machined. Following is a survey of the commonly used drills. 在钻削作业中,要用到被称为钻头的圆柱形回转端切削刀具。钻头可以有一条或多条直的或是螺旋状的切削刃以及相应的出屑槽。出屑槽的功能是给钻削作业中产生的切屑提供排出通道,并允许润滑剂和冷却液到达切削刃和正在被加工的表面。下面是常用钻头的概述。 Milling and Milling Cutter 铣削和铣刀

Milling is a machining process that is carried out by means of a multiedge rotating tool known as a milling cutter.In this process, metal removal is achieved through combining the rotary motion of the milling cutter and linear motions of the workpiece simultaneously. Milling operations are employed in producing flat, contoured and helical surfaces as well as for thread- and gear-cutting operation.

铣削是采用被称为铣刀的多刃旋转刀具完成的机加工作业。在此工艺中,金属去除是通过铣刀的旋转运动和工件的直线运动的组合实现的。铣削作业既可用于生成平面、轮廓面和螺旋面,也可用于切削螺纹和齿轮。

Each of the cutting edges of a milling cutter acts as an individual single-point cutter when it engages with the workpiece metal. Therefore, each of those cutting edges has appropriate rake and relief angles. Since only a few of the cutting edges are engaged with the workpiece at a time, heavy cuts can be taken without adversely affecting the tool life. In fact, the permissible cutting speeds and feeds for milling are three to four times higher than those for turning or drilling.Moreover, the quality of the surfaces machined by milling is generally superior to the quality of surfaces machined by turning, shaping, or drilling.

在铣刀切削工件金属时,铣刀的每条切削刃都象一单独的单刃刀具一样作用。所以每条切削刃都适当的前后角。由于同一时间只有部分切削刃切削工件,因此可以在对刀具寿命没有不利影响的情况下承担重型切削。事实上,铣削允许的切削速度和进给比车削或钻削高三到四倍。此外,由铣削加工的表面质量

27

通常优于车削、刨削或钻削加工的表面质量。

A wide variety of milling cutters is available in industry. This, together with the fact that a milling machine is a very versatile machine tool, makes the milling machine the backbone of a machining workshop.

工业上可采用的铣刀类型众多。连同铣床是极通用机床的事实,使得铣床成为机加工车间的支柱。 As far as the direction of cutter rotation and workpiece feed are concerned, milling is performed by either of the following two methods.

至于涉及到铣刀转动的方向和工件的进给,铣削可以通过下列两种方法之一进行。

第十三单元

1) The location of workpiece. Fig.13.1 represents a body that is completely free in space. In this condition it has six degrees of freedom. Consider these freedoms with respect to the three mutually perpendicular axes XX, YY, and ZZ. The body can move along any of these axes; it therefore has three freedoms of translation. It can also rotate about any of the three axes; it therefore has three freedoms of rotation. The total number of freedoms is six. When work is located, as many of these freedoms as possible must be eliminated, to ensure that the operation is performed with the required accuracy. Accuracy is ensured by machining suitable location features as early as possible, and using them for all location, unless other considerations mean that other location features must be used. If it is necessary, the new location features must be machined as a result of location from the former location features.

1) 工件的定位:图13.1表示一个在空间完全自由的物体,在这种情况下它具有六个自由度。相对于三根互相垂直的坐标轴XX、YY和ZZ来考虑这些自由度。此物体能沿三根坐标轴的任意一根移动;这样就具有三个平移自由度。它也能围绕三根坐标轴的任意一根回转;这样它又具有三个旋转自由度。总的自由度数目是六个。当工件被定位时,必须尽可能多地消除这些自由度,以保证作业按要求精度进行。除非有必要采用另外定位要素的其它考虑,精度可通过尽可能早地加工合适的定位要素并采用它们进行所有定位来保证。如果必要的话,新的定位要素必须作为先前的定位要素的定位结果来加工。

2) The clamping of the workpiece. The clamping system must be such that the workpiece is held against the cutting forces, and the clamping forces must not be so great as to cause the workpiece to become distorted or damaged. The workpiece must be supported beneath the point of clamping, to ensure that the forces are taken by the main frame of the jig or fixture, and on to the machine table and bed. When jigs and fixtures are designed, the clamping system is designed to ensure that the correct clamping force is applied, and that the clamps can be operated quickly but with safety.

2) 工件的装夹:装夹系统必须使工件对着切削力夹持,而且装夹力又不能大得引起工件变形或损坏。工件必须在装夹点下被支撑,以保证这些力由钻模或夹具的主框架来承受并传递给机器台和床身。在设计钻模和夹具时,要同时设计装夹系统来保证提供恰当的装夹力,并使装夹操作快速而安全。

Typical milling fixture. Figure 13.3 illustrates a simple milling fixture for milling the slot in the otherwise completed workpiece shown. The workpiece is located from two of the four holes in its base, and from the underside of the base. The workpiece is clamped in position, and cutter is located against the setting block, which provides setting or cutter position and depth of cut. The fixture must be positioned relative to the machine table, this is done by engaging the two tenons at the bottom of the fixture in the slot in the machine table. The fixture is secured to the machine table with T-bolts, also engaging in the slots in the table (Fig.13.3). 典型的铣削夹具:图13.3所示为一用于在图示其它工序都完成的工件上铣槽的简单铣削夹具。此工件采用其基座上四孔中的两孔和基座的底面定位。工件被夹持到位,铣刀靠着提供安装或铣刀位置及切削深度的安装台定位。夹具必须相对于铣床工作台定位,这可通过把夹具底部的两个凸榫插入工作台上的槽中来实现。夹具用T型螺栓固定于铣床工作台,同时与工作台上的槽接合(图13.3)。

第十四单元

Dimensioning 标注尺寸

The design of a machine includes many factors other than those of determining the loads and stresses and selecting the proper materials.Before construction or manufacture can begin, it is necessary to have complete assembly and detail drawings to convey all necessary information

28