3x1?0,x2??a,
2333??3当x??a时,y?a2, ∴C??a,a2?. ……………………………(3分)
244??2?3?过C作CD?x轴于点D,∴D??a,0?.
?2?∵?OCA?90?,∴?OCD∽?CAD,∴
22CDOD?, ADCD1?3??3?∴CD?AD?OD,即?a2???a???a?,
2?2??4?223(舍去)3……………………………(5分) ,a3??33433,CD?a2?1, ∴OA??2a?34123……………………………………(6分) ∴S?OAC?OA?CD?23∴a1?0(舍去),a2?(3)①C2:y??x2?
4323, x,对称轴l2:x?33点A关于l2的对称点为O(0,0),C(3,1), 则P为直线OC与l2的交点,
设OA的解析式为y?kx,∴1?3k,得k?3x, 33, 3图6.2 则OA的解析式为y? 当x?223232,). ……………………………………(8分) 时,y?,∴P(3333
②设E(m,?m2?4323),(0?m?), 33
则S?OBE?12343324??(?m2?)??m?m, 23333 而B(23,0),C(3,1), 3 设直线BC的解析式为y?kx?b,
?1?3k?b?由?,解得k?3,b??2, 230?k?b?3?
?直线BC的解析式为y?3x?2. ……………………………………(9分) 过点E作x轴的平行线交直线BC于点N, 则?m2?4332423即x??, m?3x?2, m?m?33333242332123, m?m??m??m?m?3333331321233213 ?1?(?m?m?)??m?m?23336633243213m?m)?(?m?m?) 33663 ∴EN??
∴S?EBC?
∴S四边形OBCE?S?OBE?S?EBC?(? ??3233332173,……………………………………(11分) m?m???(m?)?2232224231733,∴当m?时,S最大?, 3242?0?m? 当m?343353??, 时,y??()2?2324235173,),S最大?. ……………………………………(13分)
2424
∴E(