2010-2019十年高考数学真题分类汇编专?8 数列 学生?解析?- 百度文库 ر

22

(1)cn=????+1?????,nN,֤:{cn}ǵȲ;

*

2(2)a1=d,Tn=(-1)????,nN,֤:??<2. ??=1??=1??2??

k

*

2????

11

22

֤(1)????=anan+1,cn=b2n+1?bn=an+1an+2-anan+1=2dan+1,

cn+1-cn=2d(an+2-an+1)=2d, {cn}ǵȲ.

22222(2)Tn=(-b1+b22)+(-b3+b4)++(-b2n-1+b2n)=2d(a2+a4++a2n)=2d

n

n(a2+a2n)12

=2dn(n+1).ԡ2k=1Tk

2

=

1

2k(k+1)2dk=1

1

n

=

(-)=2(1-n+1)<2. 2dk=1kk+12d2d

2*

1

n

11111

28.(2016T18)֪{an}ǵȱ,ǰnΪSn(nN),a?a=a,S6=63.

123(1){an}ͨʽ;

(2)nN,bnlog2anlog2an+1ĵȲ,{(-1)b2n}ǰ2n.

*

n

112

(1){an}ĹΪq. ֪,a?aq=aq2,q=2,q=-1.

111

1-q6

S6=a1=63,֪

1-q121

1

2

q-1,

1-26a1=63,

1-212n-1

a1=1.an=2.

n

n-1

(2),bn=(log2an+log2an+1)=(log22+log22)=n-, {bn}Ϊ,Ϊ1ĵȲ. {(-1)b2n}ǰ

n

1

212

nΪTn,

2222

T2n=(-b1+b22)+(-b3+b4)++(-b2n-1+

b22n)=b1+b2+b3+b4++b2n-1+b2n=

2n(b1+b2n)2

=2n. 21

29.(2016ȫ1T17)֪{an}ǹΪ3ĵȲ,{bn}b1=1,b2=3,anbn+1+bn+1=nbn. (1){an}ͨʽ; (2){bn}ǰn.

(1)֪,a1b2+b2=b1,b1=1,b2=3,a1=2.{an}Ϊ2,Ϊ3ĵȲ,ͨʽΪan=3n-1.

(2)(1)anbn+1+bn+1=nbnbn+1=3n, {bn}Ϊ1,Ϊ3ĵȱ.{bn}ǰnΪSn,Sn=

1

1-(3)1-311n

1

b

=2?

3123n-1. 30.(2016ȫ3T17)֪Ϊ{an}a1=1, a2n-(2an+1-1)an-2an+1=0.

41

(1)a2,a3;

(2){an}ͨʽ.

(1)a2=,a3=. n+1

(2)a2=2.{an}Ϊn-(2an+1-1)an-2an+1=02an+1(an+1)=an(an+1).Ϊ{an}ĸΪ,an

1214a1

1,Ϊ2ĵȱ,an=

1

2

n-1.

1

31.(2016ȫ3T17)֪{an}ǰnSn=1+an,Цˡ0. (1)֤{an}ǵȱ,ͨʽ; (2)S5=32,.

(1)a1=S1=1+a1,ʦˡ1,a1=

1

,a10. 1-31

Sn=1+an,Sn+1=1+an+1,ʽan+1=an+1-an,an+1(-1)=an.a10,ˡ0an0,

an+1an

=

11n-1.{an}Ϊ1-,Ϊ-1ĵȱ,an=1-(-1). -1n

Sn=1-().

-131S5=3251-()-1(2)(1)=

315,()32-1=

1

.æ=-1. 3232.(2015T16)֪Ȳ{an}a1+a2=10,a4-a3=2. (1){an}ͨʽ;

(2)ȱ{bn}b2=a3,b3=a7.:b6{an}ĵڼ? (1)Ȳ{an}ĹΪd. Ϊa4-a3=2,d=2.

Ϊa1+a2=10,2a1+d=10,a1=4. an=4+2(n-1)=2n+2(n=1,2,). (2)ȱ{bn}ĹΪq. Ϊb2=a3=8,b3=a7=16,q=2,b1=4. b6=42=128. 128=2n+2n=63.

b6{an}ĵ63.

33.(2015졤T16)֪Ȳ{an}a3=2,ǰ3S3=2. (1){an}ͨʽ;

(2)ȱ{bn}b1=a1,b4=a15,{bn}ǰnTn.

42

9

6-1

(1){a3293

n}ĹΪd,֪a1+2d=2,3a1+2d=2,a1+2d=2,a1+d=2, a11=1,d=2, ͨʽa??-1??+1

n=1+2,an=2. (2)(1)b1=1,b4=a15=

15+1

2=8. {bq,q3

=??

n}ĹΪ4??1

=8,Ӷq=2,

{b1-2??)n

n}ǰn

T??1(1-????)1(n=1-??=

1-2=2-1. 34.(2015T17)Ȳ{an},a2=4,a4+a7=15. (1){an}ͨʽ;

(2)bn=2????-2+n,b1+b2+b3++b10ֵ. (1)Ȳ{an}ĹΪd. ֪{??1+??=4,

(??3??)+(??

1+1+6??)=15,{????1=3,=1.an=a1+(n-1)d=n+2.

(2)(1)ɵbn

n=2+n.

b2

3

10

1+b2+b3++b10=(2+1)+(2+2)+(2+3)++(2+10) =(2+22

+23

++210

)+(1+2+3++10)

=2(1-210)(1+10)101-2+2

=(211-2)+55=211

+53=2 101.

35.(2015ȫ1T17)SnΪ{an}ǰn.֪an>0,??2??+2an=4Sn+3.

(1){an}ͨʽ; (2)bn=

1

????????+1

,{bn}ǰn.

(1)??2

??+2an=4Sn+3,֪??2??+1+2an+1=4Sn+1+3.

ɵ??2??+1???2??+2(an+1-an)=4an+1,2(an+1+an)=??2??+1???2??=(an+1+an)(an+1-an).

an>0,ɵan+1-an=2.

??21+2a1=4a1+3,a1=-1(ȥ),a1=3.

{an}Ϊ3,Ϊ2ĵȲ,ͨʽΪan=2n+1. (2)an=2n+1֪

43

bn=????=(2??+1)(2??+3)=2(2??+1-2??+3).

????+1

{bn}ǰnΪTn,Tn=b1+b2++bn=2[(3-5)+(5-7)++

1

1

1

1

1

11

?

2??+12??+3

11111

=32??+3. ()

??

36.(2015աT18)֪{an}ǵĵȱ,a1+a4=9,a2a3=8. (1){an}ͨʽ;

??+1

(2)SnΪ{an}ǰn,bn=????,{bn}ǰnTn.

????+1

??

(1)֪a1a4=a2a3=8, ??=1,??=8,

a1+a4=9,ɽ{1{1(ȥ).

??4=8??4=1a4=a1qùq=2,an=a1q=2. (2)Sn=bn=

??1(1-????)n

=2-1, 1-??3

n-1

n-1

????+1????????+1

=

????+1-????????????+1

=

1

1????1

?

1????+1

,

1

1

1

1

1

1

Tn=b1+b2++bn=(-)+(-)++(-)=?????=1-??+1. ??1??2??2??3????????+12-11??+1

37.(2015T18)֪{an}an+2=qan(qΪʵ,q1),nN,a1=1,a2=2,a2+a3,a3+a4,a4+a5ɵȲ.

(1)qֵ{an}ͨʽ;

(2)bn=??22??,nN,{bn}ǰn.

2??-1

*

*

1

????????

(1)֪,(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),a4-a2=a5-a3,a2(q-1)=a3(q-1).Ϊq1,a3=a2=2,a3=a1q,q=2. n=2k-1(kN)ʱ,an=a2k-1=2

*

k

*

k-1

??-1=22;

n=2k(kN)ʱ,an=a2k=2=22.

??-1

22,??Ϊ,

??

,{an}ͨʽΪan={??

22,??Ϊż.(2)

1

(1)

1

1

bn=

??????2??2????2??-1

12

=

??2

??-1.

1

1

{bn}

1

1

ǰ

1

n

1

Ϊ

12Sn,

Sn=10+21+32++(n-1)

2

2

2

1111

,2Sn=1+2+2++??-122

??

???2??-2+n

2

??-1,2Sn=11+22+33++(n-1)

2222

??-1+n??,ʽ

=

1-??21-211

?

??2??=2-??22?

????+2

??,,Sn=4-??-1.,{bn}ǰ22

44