22
(1)cn=????+1?????,nN,֤:{cn}ǵȲ;
*
2(2)a1=d,Tn=(-1)????,nN,֤:??<2. ??=1??=1??2??
k
*
2????
11
22
֤(1)????=anan+1,cn=b2n+1?bn=an+1an+2-anan+1=2dan+1,
cn+1-cn=2d(an+2-an+1)=2d, {cn}ǵȲ.
22222(2)Tn=(-b1+b22)+(-b3+b4)++(-b2n-1+b2n)=2d(a2+a4++a2n)=2d
n
n(a2+a2n)12
=2dn(n+1).ԡ2k=1Tk
2
=
1
2k(k+1)2dk=1
1
n
=
(-)=2(1-n+1)<2. 2dk=1kk+12d2d
2*
1
n
11111
28.(2016T18)֪{an}ǵȱ,ǰnΪSn(nN),a?a=a,S6=63.
123(1){an}ͨʽ;
(2)nN,bnlog2anlog2an+1ĵȲ,{(-1)b2n}ǰ2n.
*
n
112
(1){an}ĹΪq. ֪,a?aq=aq2,q=2,q=-1.
111
1-q6
S6=a1=63,֪
1-q121
1
2
q-1,
1-26a1=63,
1-212n-1
a1=1.an=2.
n
n-1
(2),bn=(log2an+log2an+1)=(log22+log22)=n-, {bn}Ϊ,Ϊ1ĵȲ. {(-1)b2n}ǰ
n
1
212
nΪTn,
2222
T2n=(-b1+b22)+(-b3+b4)++(-b2n-1+
b22n)=b1+b2+b3+b4++b2n-1+b2n=
2n(b1+b2n)2
=2n. 21
29.(2016ȫ1T17)֪{an}ǹΪ3ĵȲ,{bn}b1=1,b2=3,anbn+1+bn+1=nbn. (1){an}ͨʽ; (2){bn}ǰn.
(1)֪,a1b2+b2=b1,b1=1,b2=3,a1=2.{an}Ϊ2,Ϊ3ĵȲ,ͨʽΪan=3n-1.
(2)(1)anbn+1+bn+1=nbnbn+1=3n, {bn}Ϊ1,Ϊ3ĵȱ.{bn}ǰnΪSn,Sn=
1
1-(3)1-311n
1
b
=2?
3123n-1. 30.(2016ȫ3T17)֪Ϊ{an}a1=1, a2n-(2an+1-1)an-2an+1=0.
41
(1)a2,a3;
(2){an}ͨʽ.
(1)a2=,a3=. n+1
(2)a2=2.{an}Ϊn-(2an+1-1)an-2an+1=02an+1(an+1)=an(an+1).Ϊ{an}ĸΪ,an
1214a1
1,Ϊ2ĵȱ,an=
1
2
n-1.
1
31.(2016ȫ3T17)֪{an}ǰnSn=1+an,Цˡ0. (1)֤{an}ǵȱ,ͨʽ; (2)S5=32,.
(1)a1=S1=1+a1,ʦˡ1,a1=
1
,a10. 1-31
Sn=1+an,Sn+1=1+an+1,ʽan+1=an+1-an,an+1(-1)=an.a10,ˡ0an0,
an+1an
=
11n-1.{an}Ϊ1-,Ϊ-1ĵȱ,an=1-(-1). -1n
Sn=1-().
-131S5=3251-()-1(2)(1)=
315,()32-1=
1
.æ=-1. 3232.(2015T16)֪Ȳ{an}a1+a2=10,a4-a3=2. (1){an}ͨʽ;
(2)ȱ{bn}b2=a3,b3=a7.:b6{an}ĵڼ? (1)Ȳ{an}ĹΪd. Ϊa4-a3=2,d=2.
Ϊa1+a2=10,2a1+d=10,a1=4. an=4+2(n-1)=2n+2(n=1,2,). (2)ȱ{bn}ĹΪq. Ϊb2=a3=8,b3=a7=16,q=2,b1=4. b6=42=128. 128=2n+2n=63.
b6{an}ĵ63.
33.(2015졤T16)֪Ȳ{an}a3=2,ǰ3S3=2. (1){an}ͨʽ;
(2)ȱ{bn}b1=a1,b4=a15,{bn}ǰnTn.
42
9
6-1
(1){a3293
n}ĹΪd,֪a1+2d=2,3a1+2d=2,a1+2d=2,a1+d=2, a11=1,d=2, ͨʽa??-1??+1
n=1+2,an=2. (2)(1)b1=1,b4=a15=
15+1
2=8. {bq,q3
=??
n}ĹΪ4??1
=8,Ӷq=2,
{b1-2??)n
n}ǰn
T??1(1-????)1(n=1-??=
1-2=2-1. 34.(2015T17)Ȳ{an},a2=4,a4+a7=15. (1){an}ͨʽ;
(2)bn=2????-2+n,b1+b2+b3++b10ֵ. (1)Ȳ{an}ĹΪd. ֪{??1+??=4,
(??3??)+(??
1+1+6??)=15,{????1=3,=1.an=a1+(n-1)d=n+2.
(2)(1)ɵbn
n=2+n.
b2
3
10
1+b2+b3++b10=(2+1)+(2+2)+(2+3)++(2+10) =(2+22
+23
++210
)+(1+2+3++10)
=2(1-210)(1+10)101-2+2
=(211-2)+55=211
+53=2 101.
35.(2015ȫ1T17)SnΪ{an}ǰn.֪an>0,??2??+2an=4Sn+3.
(1){an}ͨʽ; (2)bn=
1
????????+1
,{bn}ǰn.
(1)??2
??+2an=4Sn+3,֪??2??+1+2an+1=4Sn+1+3.
ɵ??2??+1???2??+2(an+1-an)=4an+1,2(an+1+an)=??2??+1???2??=(an+1+an)(an+1-an).
an>0,ɵan+1-an=2.
??21+2a1=4a1+3,a1=-1(ȥ),a1=3.
{an}Ϊ3,Ϊ2ĵȲ,ͨʽΪan=2n+1. (2)an=2n+1֪
43
bn=????=(2??+1)(2??+3)=2(2??+1-2??+3).
????+1
{bn}ǰnΪTn,Tn=b1+b2++bn=2[(3-5)+(5-7)++
1
1
1
1
1
11
?
2??+12??+3
11111
=32??+3. ()
??
36.(2015աT18)֪{an}ǵĵȱ,a1+a4=9,a2a3=8. (1){an}ͨʽ;
??+1
(2)SnΪ{an}ǰn,bn=????,{bn}ǰnTn.
????+1
??
(1)֪a1a4=a2a3=8, ??=1,??=8,
a1+a4=9,ɽ{1{1(ȥ).
??4=8??4=1a4=a1qùq=2,an=a1q=2. (2)Sn=bn=
??1(1-????)n
=2-1, 1-??3
n-1
n-1
????+1????????+1
=
????+1-????????????+1
=
1
1????1
?
1????+1
,
1
1
1
1
1
1
Tn=b1+b2++bn=(-)+(-)++(-)=?????=1-??+1. ??1??2??2??3????????+12-11??+1
37.(2015T18)֪{an}an+2=qan(qΪʵ,q1),nN,a1=1,a2=2,a2+a3,a3+a4,a4+a5ɵȲ.
(1)qֵ{an}ͨʽ;
(2)bn=??22??,nN,{bn}ǰn.
2??-1
*
*
1
????????
(1)֪,(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),a4-a2=a5-a3,a2(q-1)=a3(q-1).Ϊq1,a3=a2=2,a3=a1q,q=2. n=2k-1(kN)ʱ,an=a2k-1=2
*
k
*
k-1
??-1=22;
n=2k(kN)ʱ,an=a2k=2=22.
??-1
22,??Ϊ,
??
,{an}ͨʽΪan={??
22,??Ϊż.(2)
1
(1)
1
1
bn=
??????2??2????2??-1
12
=
??2
??-1.
1
1
{bn}
1
1
ǰ
1
n
1
Ϊ
12Sn,
Sn=10+21+32++(n-1)
2
2
2
1111
,2Sn=1+2+2++??-122
??
???2??-2+n
2
??-1,2Sn=11+22+33++(n-1)
2222
??-1+n??,ʽ
=
1-??21-211
?
??2??=2-??22?
????+2
??,,Sn=4-??-1.,{bn}ǰ22
nΪ
44