±±Ê¦´ó°æÆßÄ꼶ϲáÊýѧȫ²á½Ì°¸¡¾72Ò³¡¿ ÏÂÔØ±¾ÎÄ

1¡¢¼ÆË㣺?2n100?0.5100?(?1)2003?1n3m?2nm 2¡¢ÒÑÖª2?3£¬2?4 Çó2µÄÖµ 25544333¡¢ÒÑÖªx?5 yn?3 Çó(x2y)2nµÄÖµ¡£ 4¡¢ÒÑÖªa?2£¬b?3£¬c?5£¬ ÊԱȽÏa¡¢b¡¢cµÄ´óС

4¡¢ Ì«Ñô¿ÉÒÔ½üËÆµØ¿´×öÊÇÇòÌ壬Èç¹ûÓÃV¡¢r·Ö±ð±íʾÇòµÄÌå»ýºÍ°ë¾¶£¬

ÄÇôv?43?r£¬Ì«ÑôµÄ°ë¾¶Ô¼Îª6?105ǧÃ×£¬ËüµÄÌå»ý´óÔ¼ÊǶàÉÙÁ¢·½Ã×£¿ 3£¨±£Áôµ½ÕûÊý£©

Î塢С½á£º±¾½Ú¿ÎѧϰÁË»ýµÄ³Ë·½µÄÐÔÖʼ°Ó¦Óã¬Òª×¢ÒâËüÓëÃݵij˷½µÄÇø±ð¡£ Áù¡¢×÷Òµ£ºP21 Öª 1¡¢2Êý1.2

1.5ͬµ×ÊýÃݵijý·¨

½ÌѧĿ±ê£º1¡¢¾­Àú̽Ë÷ͬµ×ÊýÃݵijý·¨µÄÔËËãÐÔÖʵĹý³Ì£¬½øÒ»²½Ìå»áÃݵÄÒâÒ壬·¢Õ¹ÍÆÀíÄÜÁ¦ºÍÓÐÌõÀí

µÄ±í´ïÄÜÁ¦¡£

2¡¢Á˽âͬµ×ÊýÃݵijý·¨µÄÔËËãÐÔÖÊ£¬²¢Äܽâ¾öһЩʵ¼ÊÎÊÌâ¡£ ½ÌÑ§ÖØµã£º»á½øÐÐͬµ×ÊýÃݵijý·¨ÔËËã¡£

½ÌѧÄѵ㣺ͬµ×ÊýÃݵijý·¨·¨ÔòµÄ×ܽἰÔËÓᣠ½Ìѧ·½·¨£º³¢ÊÔÁ·Ï°·¨£¬ÌÖÂÛ·¨£¬¹éÄÉ·¨¡£ ½ÌѧÓþߣºÍ¶Ó°ÒÇ »î¶¯×¼±¸£º

1¡¢Ìî¿Õ£º£¨1£©x4?x2? £¨2£©2a??33??2? £¨3£©??b3c2???3?2

2¡¢¼ÆË㣺 £¨1£©2y3?y3?2y2 £¨2£©16x2y2½Ìѧ¹ý³Ì£º

ËÄ¡¢ ̽Ë÷Á·Ï°£º

??3?????4xy?

33226£¨1£©2?2?4?264??

108£¨1£©10?10?5?1085??

?¸ö10?????????¸ö10m????????1010?10???10mn£¨3£©10?10£½n?£½10?10???10£½1010?10??10??????????¸ö10

m?£­3?£¨4£©?£­3???£­3?£½?£­3?nmn??¸ö?£­3??????????????¸ö?£­3???????£­3???£­3?????£­3??????£½?£­3???£­3????£­3?£½?£­3???£­3?????£­3??????????????¸ö?£­3?

´ÓÉÏÃæµÄÁ·Ï°ÖÐÄã·¢ÏÖÁËʲô¹æÂÉ£¿

mn²ÂÒ»²Â£ºa?a??a?0,m,n¶¼ÊÇÕýÕûÊý£¬ÇÒm£¾n?

£¨2£©??x????x??52Îå¡¢ ¹®¹ÌÁ·Ï°£º

1¡¢Ìî¿Õ£º £¨1£©a5?a?£¨3£©y16?2¡¢¼ÆË㣺

£¨1£©?ab??ab £¨2£©?y43m?3

£½y11 £¨4£©

96?b5?b2 £¨5£©?x?y???x?y???yn?1?1? £¨3£©??x2???0.25x2?4?5??2

£¨4£©??5mn????5mn?6?42? £¨5£©?x?y???y?x???x?y?

84?33¡¢ÓÃСÊý»ò·ÖÊý±íʾÏÂÁи÷Êý£º

?355??5??2?2?3?343£¨1£©? £¨2£© £¨3£© £¨4£©??? £¨5£©4.2?10 £¨6£©0.25

?118??6?Áù¡¢ Ìá¸ßÁ·Ï°£º

1¡¢ÒÑÖªan?8,amn?64,ÇómµÄÖµ¡£

2¡¢Èôam?3,an?5,Çó£¨ 1£©am?nµÄÖµ£»£¨2£©a3m?2nµÄÖµ¡£3¡¢£¨1£©Èô2£½

x01£¬Ôòx£½32x £¨2£©Èô?£­2???£­2???£­2?,Ôòx£½x32x

£¨3£©Èô0.000 000 3£½3¡Á10£¬Ôòx?С ½á£º»á½øÐÐͬµ×ÊýÃݵijý·¨ÔËËã¡£

×÷ Òµ£º¿Î±¾P24Öª1.2.3Êý1 ½Ìѧºó¼Ç£º

4?3? £¨4£©Èô???,Ôòx£½9?2?x

1.6 µ¥ÏîʽµÄ³Ë·¨

½ÌѧĿ±ê

1£®Ê¹Ñ§ÉúÀí½â²¢ÕÆÎÕµ¥ÏîʽµÄ³Ë·¨·¨Ôò£¬Äܹ»ÊìÁ·µØ½øÐе¥ÏîʽµÄ³Ë·¨¼ÆË㣻 2£®×¢ÒâÅàÑøÑ§Éú¹éÄÉ¡¢¸ÅÀ¨ÄÜÁ¦£¬ÒÔ¼°ÔËËãÄÜÁ¦£® ½ÌÑ§ÖØµãºÍÄѵã

׼ȷ¡¢Ñ¸ËٵؽøÐе¥ÏîʽµÄ³Ë·¨ÔËË㣮 ¿ÎÌýÌѧ¹ý³ÌÉè¼Æ

Ò»¡¢´ÓѧÉúÔ­ÓÐÈÏÖª½á¹¹Ìá³öÎÊÌâ

1£®ÏÂÁе¥Ïîʽ¸÷ÊǼ¸´Îµ¥Ïîʽ£¿ËüÃǵÄϵÊý¸÷ÊÇʲô£¿

2£®ÏÂÁдúÊýʽÖУ¬ÄÄЩÊǵ¥Ïîʽ£¿ÄÄЩ²»ÊÇ£¿

3£®ÀûÓó˷¨µÄ½»»»ÂÉ¡¢½áºÏÂɼÆËã6¡Á4¡Á13¡Á25£® 4£®Ç°ÃæÑ§Ï°ÁËÄÄÈýÖÖÃݵÄÔËËãÐÔÖÊ£¿ÄÚÈÝÊÇʲô£¿ ¶þ¡¢½²ÊÚпÎ

1£®Òýµ¼Ñ§ÉúµÃ³öµ¥ÏîʽµÄ³Ë·¨·¨Ôò

ÀûÓó˷¨½»»»ÂÉ¡¢½áºÏÂÉÒÔ¼°Ç°ÃæËùѧµÄÃݵÄÔËËãÐÔÖÊ£¬¼ÆËãÏÂÁе¥Ïîʽ³ËÒÔµ¥Ïîʽ£º (1) 2x2y¡¤3xy2 =(2¡Á3)(x2¡¤x)(y¡¤y2) =6x3y3£»

(ÀûÓó˷¨½»»»ÂÉ¡¢½áºÏÂɽ«ÏµÊýÓëϵÊý£¬Ïàͬ×Öĸ·Ö±ð½áºÏ£¬ÓÐÀíÊýµÄ³Ë·¨¡¢Í¬µ×ÊýÃݵij˷¨)

(2) 4a2x5¡¤(-3a3bx)

=[4¡Á(-3)](a2¡¤a3)¡¤b¡¤(x5¡¤x) =-12a5bx6£®

(bÖ»ÔÚÒ»¸öµ¥ÏîʽÖгöÏÖ£¬Õâ¸ö×Öĸ¼°ÆäÖ¸ÊýÕÕ³­)

ѧÉúÁ·Ï°£¬½ÌʦѲÊÓ£¬È»ºóÓÉѧÉú×ܽá³öµ¥ÏîʽµÄ³Ë·¨·¨Ôò£º

µ¥ÏîʽÏà³Ë£¬°ÑËüµÄϵÊý¡¢Ïàͬ×Öĸ·Ö±ðÏà³Ë£¬¶ÔÓÚÖ»ÔÚÒ»¸öµ¥ÏîʽÀﺬÓеÄ×Öĸ£¬ÔòÁ¬Í¬ËüµÄÖ¸Êý×÷Ϊ»ýµÄÒ»¸öÒòʽ£®

2£®Òýµ¼Ñ§ÉúÆÊÎö·¨Ôò (1)·¨Ôòʵ¼Ê·ÖΪÈýµã£º¢ÙϵÊýÏà³Ë¡ª¡ªÓÐÀíÊýµÄ³Ë·¨£»¢ÚÏàͬ×ÖĸÏà³Ë¡ª¡ªÍ¬µ×ÊýÃݵij˷¨£»¢ÛÖ»ÔÚÒ»¸öµ¥ÏîʽÖк¬ÓеÄ×Öĸ£¬Á¬Í¬ËüµÄÖ¸Êý×÷Ϊ»ýµÄÒ»¸öÒòʽ£¬²»ÄܶªµôÕâ¸öÒòʽ£®

(2)²»ÂÛ¼¸¸öµ¥ÏîʽÏà³Ë£¬¶¼¿ÉÒÔÓÃÕâ¸ö·¨Ôò£® (3)µ¥ÏîʽÏà³ËµÄ½á¹ûÈÔÊǵ¥Ïîʽ£®

Èý¡¢Ó¦ÓþÙÀý ±äʽÁ·Ï° Àý1 ¼ÆË㣺

(1)(-5a2b3)(-3a)£»(2)(2x)3(-5x2y)£» (4)(-3ab)(-a2c)2¡¤6ab(c2)3£®

µÚ(1)СÌâÓÉѧÉú¿Ú´ð£¬½Ìʦ°åÑÝ£»µÚ(2)£¬(3)£¬(4)СÌâÓÉѧÉú°åÑÝ£¬¸ù¾ÝѧÉú°åÑÝÇé¿ö£¬½ÌʦÌáÐÑѧÉú×¢Ò⣺ÏÈ×ö³Ë·½£¬ÔÙ×öµ¥ÏîʽÏà³Ë£¬Öмä¹ý³ÌÒªÏêϸд³ö£¬´ýÊìÁ·ºó²Å¿ÉÊ¡ÂÔ£®

¿ÎÌÃÁ·Ï° 1£®¼ÆË㣺

(1) 3x5¡¤5x3£»(2)4y¡¤(-2xy3)£» 2£®¼ÆË㣺

(1)(3x2y)3¡¤(-4xy2)£»(2)(-xy2z3)4¡¤(-x2y)3£® 3£®¼ÆË㣺

(1)(-6an+2)¡¤3anb£»

(4)6abn¡¤(-5an+1b2)£®

Àý2 ¹âµÄËÙ¶ÈÿÃëԼΪ3¡Á105ǧÃ×£¬Ì«Ñô¹âÉäµ½µØÇòÉÏÐèÒªµÄʱ¼äÔ¼ÊÇ5¡Á102Ã룬µØÇòÓëÌ«ÑôµÄ¾àÀëÔ¼ÊǶàÉÙǧÃ×£¿

½â£º(3¡Á105)¡Á(5¡Á102)=15¡Á107=1.5¡Á108£® ´ð£ºµØÇòÓëÌ«ÑôµÄ¾àÀëÔ¼ÊÇ1.5¡Á108ǧÃ×£®

ÏÈÓÉѧÉúÌÖÂÛ½âÌâµÄ·½·¨£¬È»ºóÓɽÌʦ¸ù¾ÝѧÉúµÄ»Ø´ð°åÊ飮 ¿ÎÌÃÁ·Ï°

Ò»ÖÖµç×Ó¼ÆËã»úÿÃë¿É×÷108´ÎÔËË㣬Ëü¹¤×÷5¡Á102Ãë¿É×÷¶àÉÙ´ÎÔËË㣿 ËÄ¡¢Ð¡½á

1£®µ¥ÏîʽµÄ³Ë·¨·¨Ôò¿É·ÖΪÈýµã£¬ÔÚ½âÌâÖÐÒªÁé»îÓ¦Óã® 2£®ÔÚÔËËãÖÐҪעÒâÔËËã˳Ðò£® ×÷Òµ£ºP28Öª1ÎÊ1 ½Ìºó¼Ç£º

1.6ÕûʽµÄ³Ë·¨£¨2£©

½ÌѧĿ±ê£º1.¾­Àú̽Ë÷ÕûʽµÄ³Ë·¨ÔËËã·¨ÔòµÄ¹ý³Ì,»á½øÐмòµ¥µÄÕûʽµÄ³Ë·¨ÔËËã.¡£

2.Àí½âÕûʽµÄ³Ë·¨ÔËËãµÄËãÀí,Ìå»á³Ë·¨·ÖÅäÂɵÄ×÷ÓúÍת»¯Ë¼Ïë,·¢Õ¹ÓÐÌõÀíµÄ˼¿¼¼°ÓïÑÔ±í

´ïÄÜÁ¦¡£

½ÌÑ§ÖØµã£ºÕûʽµÄ³Ë·¨ÔËËã¡£

½ÌѧÄÑµã£ºÍÆ²âÕûʽ³Ë·¨µÄÔËËã·¨Ôò¡£ ½Ìѧ·½·¨£º³¢ÊÔÁ·Ï°·¨£¬ÌÖÂÛ·¨£¬¹éÄÉ·¨¡£ ½ÌѧÓþߣºÍ¶Ó°ÒÇ »î¶¯×¼±¸£º¼ÆË㣺

32£¨1£© £¨1£© ?m?m £¨2£© (xy)?(xy) £¨3£© 2(ab£­3)

22£¨4£©£­3(ab2c+2bc£­c) £¨5£©(¨D2a3b)?(¨D6ab6c) £¨6£© (2xy2)?3yx

½Ìѧ¹ý³Ì£º