黑龙江省大庆市高三数学第一次教学质量检测试题 理 下载本文

平面A1B1C1与平面CB1D所成的锐二面角的余弦值

222. ............12 11(21)(本题满分12分)解:(Ⅰ)因为椭圆C 的右焦点F?c,0?,PF?6,?c?2, ....1

?(2,2)在椭圆C上,?2242??1, ..................2 a2b2x2y2??1. ..........4 由a?b?4得a?8,b?4,,所以椭圆C 的方程为8422(Ⅱ)由题意可得l1的斜率不为零, 当l1垂直x轴时,?MAB的面积为当l1不垂直x轴时, 设直线l1的方程为:y?kx?1?4?2?4, ..5 22,则直线l2的方程为:

?x2y2?11??消去y得y??x?2,A?x1,y1?,B?x2,y2?,由?84k?y?kx?2??1?2k?x22?42kx?4?0,所以x1?x2??42k?4,xx?, ..........7 12221?2k1?2k4(1?k2)(4k2?1)则AB?1?kx1?x2?, ....................8 22k?12又圆心Q2,2到l2的距离d1???21?k2?2得k2?1, ................9

又MP?AB,QM?CD,所以M点到AB的距离等于Q点到AB的距离, 设为d2,即

d2?2k?2?21?k2?2k1?k2, .....................10

所以?MAB面积

4k4k2?11k2(4k2?1)s?ABd2??4, .............11

22k2?1(2k2?1)2令t?2k?1??3,???,则

222t2?3t?11?13?1?45?1?1??4??????,4???0,?,S?4?, 2t22?t2?8?3t?3???综上, ?MAB面积的取值范围为??45??3,4?. ................12 ??9

(22)(本题满分12分)解:(1)由a?1得f(1)=2 ..........1 24f/(x)?x?1?,f/(1)??2 ..........................3

x则所求切线方程为y?2??2(x?1),即y??2x?4 ..................4

42(ax2?ax?2),x?0 ................5 (2)f(x)?2a(x?1)??xx/令g(x)?ax?ax?2。 当a?0时,f/(x)??24?0,f(x)在?1,e?上单调递减, x?f(x)?max?f(1)?0?1,恒成立,符合题意。 ....................6

2当a?0时,g(x)?ax?ax?2,开口向下,对称轴为x??,且g(0)??2?0, 所以当x??1,e?时,g(x)?0,f(x)?0,f(x)在[1,e]上单调递减,

/12?f(x)?max?f(1)?0?1,恒成立,符合题意。 ....................8

2当a?0时,g(x)?ax?ax?2的开口向上,对称轴为x??,g(0)??2?0, 所以g(x)?ax?ax?2在(0,??)单调递增,故存在唯一x0?(0,??),

/使得g(x0)?0,即f(x0)?0 .........................9

122当0?x?x0时,g(x)?0,f(x)?0,f(x)单调递减;当x?x0时,

/g(x)?0,f/(x)?0,f(x)单调递增,所以在[1,e]上,?f(x)?max?man?f(1),f(e)?.

4a?1?f(1)?1?11所以?得所以 。..................11 a?.0?a?,得?,244f(e)?1a(e?1)?4?1??综上,a得取值范围是(??,)。 .....................12

14 10