安徽工程大学机电学院毕业设计(论文)
第二章 色氨酸生产工艺
2.1生产方法摘要:
生产色氨酸的方法很多。主要有天然物质提取法、化学合成及光学拆分组合法、发酵法、酶法等等,目前主要采用发酵法生产色氨酸。发酵法生产色氨酸。 其优点是可利用廉价的葡萄糖原料直接生产产品。制糖可采用美国高效喷射液化技术和复合酶糖化技术。提高淀粉糖的转化率和 67 值。降低生产成本。色氨酸生产菌特性专一。提纯后产品质量好。成本低。易于大规模生产。 选择具有国际先进水平高产酸、高转化率大肠菌种生产色氨酸。不但附加值更高。而且能够发挥氨基酸发酵企业自身的优势。 改变氨基酸发酵企业产品单一,利润较薄的状况。[8] 2.2发酵法生产L-色氨酸生产工艺特点:
色氨酸以玉米淀粉为原料。经液化、糖化制得高质量糖液。既而经大肠杆菌发酵、膜过滤、脱色、离交、浓缩、结晶、离心干燥、包装得到色氨酸产品。生产可采用国外具有世界领先水平高产酸、高转化率菌种、 成熟的先进技术。 使色氨酸生产工艺达到更高水平。
2.3 L-发酵法色氨酸生产工艺关键过程: 2.3.1 发酵原料:
根据本地条件。结合公司实际情况。选用合适的碳源和氮源。采用淀粉糖作为主要的碳源。酵母抽提物作为底料的氮源。同时辅以适量的无机盐和其他微量元素。 2.3.2 发酵工艺流程:
斜面→摇瓶种子→一级种子罐→主罐
从摇瓶到一级罐最佳接种量为1%左右,从一级种子罐到主罐最佳接种量为10%左右。根据一级罐和主罐的体积接种量可适当调整。 2.3.3发酵工艺条件及控制[1]
L-色氨酸生产菌是一种大肠杆菌,具有较好的结构稳定性和分裂不稳定性 发酵过程中菌种的质粒稳定性对发酵水平高低有严重影响,维持发酵高产酸就要保证发酵过程菌种质粒稳定,在培养过程可以通过调节适当罐压、培养温度、溶氧控制水平、底料中酵母抽提物添加量等方面进行控制保证发酵过程中不发生质粒丢失现象。
L-色氨酸发酵液中乙酸浓度高时对L-色氨酸生产菌的生长和产酸均有抑制作用。因此发酵过程中代谢副产物乙酸的多少对发酵水平高低有严重影响。发酵过程中可以通过调节溶氧控制水平初始葡萄糖浓度,发酵葡萄糖浓度及控制菌体比生长速率等方面进行
- 5 -
曾华辉:年产1000吨色氨酸发酵工厂设计
控制减少,发酵液中乙酸的生成。
L-色氨酸发酵过程中产大量的热,为了维持发酵温度的稳定必须采取适当的降温措施在发酵罐外部加上冷却盘管采用冰水降温,控制发酵温度33度左右,L-色氨酸发酵过程中由于无机盐的消耗及产酸引起PH变化所以发酵过程中适当流加氨水或液氨调节PH控制最佳PH值在6.9左右。
L-色氨酸发酵为耗氧发酵并且产酸过程中用氧量比较大,溶氧的多少直接影响着代谢的方向 进而影响产酸和转化率 溶氧低于20%容易发生菌体自溶、乙酸产量增加,所以在主发酵过程中必须控制溶氧大于20%,这要求我们采用先进的通风搅拌装置设计合理的发酵罐径高比增加通气量提高溶解氧。
L-色氨酸发酵过程中采用高糖流加技术,使发酵糖浓度始终处于低浓度从而有效减少残糖对发酵产生的抑制作用避免发酵后期产生乙酸上升的现象保证高产酸及转化率。 此外L-色氨酸发酵生产可采用先进的培养基连消技术,高精度空气膜滤技术使发酵污染程度控制最低水平,确保发酵产酸水平。对发酵车间的环境定期进行消毒提高环境清洁度。对排污要控制对排污口要用漂白粉处理对空气过滤系统要定期清理减少染菌机率。 2.3.4精制工艺条件及控制
发酵液的质量高低决定着精制收率与产品质量所以发酵液必须经过处理。 首先发酵结束后要对发酵液加热并调到合适的PH,采用先进的陶瓷膜或纳滤分离技术去除发酵液中L-色氨酸菌体及部分蛋白质大分子色素、杂质等此时料液的透光率越高越好以利提高提取收得率和提高L-色氨酸质量。[4]
过滤后的发酵液加热到适当温度,经过活性炭处理进一步脱色与纯化脱色过程中控制活性炭用量,过多,影响收率。过少,又达不到脱色效果。
脱色后的发酵液要进一步分离纯化,主要方法有离交交换法、有机溶液萃取法、乳状液膜提取法等。其中离子交换法具有工艺简便、投资少、节能、污染小的优点,适合于工业应用用离交交换法分离纯化L-色氨酸进一步去除物料中杂质、色素及其它离子。
分离纯化后的发酵液经浓缩结晶处理。因为L-色氨酸具有热不稳定性,因此浓缩结晶时要严格控制温度条件防止温度过高导致L-色氨酸分解。浓缩结晶后的发酵液经离心分离干燥包装等工序得到成品L-色氨酸。
- 6 -
安徽工程大学机电学院毕业设计(论文)
第三章 工艺论证
3.1 无菌空气系统
微生物在繁殖和耗氧发酵过程中都需要氧气,通常以空气作为氧源。空气中含有各式各样的微生物,这些微生物随着空气进入培养液,在适宜的条件下,它们会大量繁殖,消耗大量的营养物质,以及产生各种代谢产物,干扰甚至破坏预定发酵的正常进行,使发酵产品的效价降低,产量下降,甚至造成发酵彻底失败等严重事故。为保证纯种培养,必须将空气中的微生物除去或杀死。此外还要求一定的相对湿度和具有一定的温度。供给发酵用的无菌空气因需克服过滤介质的阻力、发酵液的静压力和管道阻力,所以常用空气压缩机加压后供给。
过滤除菌是目前生物工业生产中最常用、适用的空气除菌方法。生物加工过程中最常用的获得大量无菌空气的常规方法 :一类是介质间孔隙大于微生物直径,故必须有一定厚度的介质滤层才能达到过滤除菌的目的,称为介质过滤或相对过滤或深层过滤。这类过滤介质有棉花、活性炭、玻璃纤维、有机合成纤维、烧结材料(烧结金属、烧结陶瓷、烧结塑料);而另一类介质的孔隙小于细菌,含细菌等微生物的空气通过介质,微生物就被截留于介质上而实现过滤除菌,有时称之为绝对过滤。但常用介质过滤法。此外,空气经过压缩和在管道输送及经过滤器时的压力和温度的变化,会引起空气相对湿度改变,一旦发生凝露析水,就会使过滤介质(如棉花)吸湿,使过滤介质除菌效率大为降低。因此,应把压缩空气中可能析出的水,在接近过滤介质之前除去。
空气过滤除菌流程:
(图3-1)选用两级冷却、分离、加热的空气除菌流程
空气 冷却水 压缩机 冷却器 分离器 加热器
粗过滤器 冷却水 冷却器 分离器 空气过滤器
- 7 -
曾华辉:年产1000吨色氨酸发酵工厂设计
注: 第一级冷却:可使大部分水、油结成较大雾粒(通常冷却到30~35 ℃); 第二级冷却:可使空气析出较小的雾粒(通常冷却到20~25 ℃); 第一次分离:分离直径较大,浓度较大的雾粒(直径在10 um以上); 第二次分离:分离直径较小的雾粒(直径在5 um以下); 其优点:
a. 比较完善的空气除菌流程,可适应各种气候条件,尤其适用潮湿的地区,其他地区可根据当地的情况,对流程中的设备作适当的增减。能充分地分离油水,使空气达到低的相对湿度下进入过滤器,以提高过滤效率。 b. 特点:两次冷却、两次分离、适当加热。
2次冷却:可以减少油膜污染对传热的影响,能提高传热系数,节约冷却用水 2次分离:可使油、水、雾分离得比较完全。
适当加热:可使除水后的空气相对湿度由100%降到50%~60%。
c .首先将进入空气压缩机的空气粗滤。滤去尘灰等固体微粒,这对空气压缩机正常运行、介质除菌有很大帮助。
d. 为防止往复压缩机产生脉动,在流程中需要设置一个或数个贮气罐。
e. 无菌过滤,空气除菌系统一般常用两台总过滤器(便于交叉使用)和分过滤器(每个发酵罐一台)相结合的二级过滤装置,以确保空气的“无菌”。 3.2 淀粉的液化和糖化:
色氨酸发酵过程中用的是葡萄糖,而所采用的发酵菌种没有分解淀粉的功能,所以在微生物发酵之前必须将淀粉分解成葡萄糖。目前采用的是喷射液化法和双酶法葡萄糖生产工艺。工艺流程包括调浆、液化、糖化和过滤。 3.2.1 调浆:
搅拌速度为10 – 20 r/min,加入工艺水和淀粉原料到淀粉浓度为25%,升温到50-55 ℃,调节pH保持在6.0-6.5之间,加入耐高温的α-淀粉酶,用量为10 U/(g淀粉)。 3.2.2 液化:
通入蒸汽到喷射器和维持柱中,预热到90-95 ℃后,将淀粉乳泵入喷射器,调节物料与蒸汽的压力,保持平衡。保持出口的温度在100-105 ℃之间,液化的淀粉乳由喷射器下方卸出,引入维持罐。维持过程的温始终要控制在95-98 ℃之间,持续时间为30分钟,最终淀粉乳的碘反应呈棕红色,且能迅速扩散。
淀粉乳经糖化后,通过螺旋版换热器降温,降至60-62 ℃,然后进入糖化罐,用10%的硫酸调节来pH至4.2-4.5,再加入糖化酶,其用量为100 U/(g淀粉)。糖化时间约为
- 8 -