ÑÏεÃô°æÊý¾Ý½á¹¹Ï°Ìâ¼°²Î¿¼´ð°¸1 ÏÂÔØ±¾ÎÄ

ϰÌâ1

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

A1. Êý¾Ý½á¹¹ÊÇÖ¸£¨ £©¡£

A.Êý¾ÝÔªËØµÄ×éÖ¯ÐÎʽ

B.Êý¾ÝÀàÐÍ

C.Êý¾Ý´æ´¢½á¹¹ D.Êý¾Ý¶¨Òå

C2. Êý¾ÝÔÚ¼ÆËã»ú´æ´¢Æ÷ÄÚ±íʾʱ£¬ÎïÀíµØÖ·ÓëÂß¼­µØÖ·²»ÏàͬµÄ£¬³ÆÖ®Îª£¨ C £©¡£

A.´æ´¢½á¹¹

B.Âß¼­½á¹¹

C.Á´Ê½´æ´¢½á¹¹ A.Ò»¶ÔÒ»¹ØÏµ C.¶à¶ÔÒ»¹ØÏµ

for(i=1; i<=n; i++)

for(j=i; j<=n; j++) x++;

A.O(1)

B.O(n)

2D.˳Ðò´æ´¢½á¹¹ B.¶à¶Ô¶à¹ØÏµ D.Ò»¶Ô¶à¹ØÏµ

D3. Ê÷ÐνṹÊÇÊý¾ÝÔªËØÖ®¼ä´æÔÚÒ»ÖÖ£¨ D £©¡£

B4. ÉèÓï¾äx++µÄʱ¼äÊǵ¥Î»Ê±¼ä£¬ÔòÒÔÏÂÓï¾äµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨ B£©¡£

C.O(n)

D.O(n)

3CA5. Ëã·¨·ÖÎöµÄÄ¿µÄÊÇ£¨1C£©£¬Ëã·¨·ÖÎöµÄÁ½¸öÖ÷Òª·½ÃæÊÇ£¨2A£©¡£ £¨1£© A.ÕÒ³öÊý¾Ý½á¹¹µÄºÏÀíÐÔ B.Ñо¿Ëã·¨ÖеÄÊäÈëºÍÊä³ö¹ØÏµ

C.·ÖÎöËã·¨µÄЧÂÊÒÔÇó¸Ä½ø D.·ÖÎöËã·¨µÄÒ×¶®ÐÔºÍÎĵµÐÔ £¨2£© A.¿Õ¼ä¸´ÔӶȺÍʱ¼ä¸´ÔÓ¶È B.ÕýÈ·ÐԺͼòÃ÷ÐÔ

C.¿É¶ÁÐÔºÍÎĵµÐÔ D.Êý¾Ý¸´ÔÓÐԺͳÌÐò¸´ÔÓÐÔ 6. ¼ÆËã»úËã·¨Ö¸µÄÊÇ£¨1£©£¬Ëü¾ß±¸ÊäÈ룬Êä³öºÍ£¨2B£©µÈÎå¸öÌØÐÔ¡£ £¨1£© A.¼ÆËã·½·¨ B.ÅÅÐò·½·¨

C.½â¾öÎÊÌâµÄÓÐÏÞÔËËãÐòÁÐ D.µ÷¶È·½·¨

£¨2£© A.¿ÉÐÐÐÔ£¬¿ÉÒÆÖ²ÐԺͿÉÀ©³äÐÔ B.¿ÉÐÐÐÔ£¬È·¶¨ÐÔºÍÓÐÇîÐÔ

C.È·¶¨ÐÔ£¬ÓÐÇîÐÔºÍÎȶ¨ÐÔ D.Ò×¶ÁÐÔ£¬Îȶ¨ÐԺͰ²È«ÐÔ

7. Êý¾ÝÔÚ¼ÆËã»úÄÚÓÐÁ´Ê½ºÍ˳ÐòÁ½ÖÖ´æ´¢·½Ê½£¬ÔÚ´æ´¢¿Õ¼äʹÓõÄÁé»îÐÔÉÏ£¬Á´Ê½´æ´¢±È˳Ðò´æ´¢Òª£¨ B £©¡£

A.µÍ A.1946 A.ÕýÈ·

B.¸ß

C.Ïàͬ

D.²»ºÃ˵

D.1968

8. Êý¾Ý½á¹¹×÷ΪһÃŶÀÁ¢µÄ¿Î³Ì³öÏÖÊÇÔÚ£¨ £©Äê¡£

B.1953

C.1964 B.´íÎó

9. Êý¾Ý½á¹¹Ö»ÊÇÑо¿Êý¾ÝµÄÂß¼­½á¹¹ºÍÎïÀí½á¹¹£¬ÕâÖֹ۵㣨B £©¡£

C.ǰ°ë¾ä¶Ô£¬ºó°ë¾ä´í

D.ǰ°ë¾ä´í£¬ºó°ë¾ä¶Ô C.Êý¾ÝÏî

D.Êý¾Ý¿â

10. ¼ÆËã»úÄÚ²¿Êý¾Ý´¦ÀíµÄ»ù±¾µ¥Î»ÊÇ£¨B £©¡£

A.Êý¾Ý B.Êý¾ÝÔªËØ

¶þ¡¢Ìî¿ÕÌâ

1. Êý¾Ý½á¹¹°´Âß¼­½á¹¹¿É·ÖΪÁ½´óÀ࣬·Ö±ðÊÇ______________ºÍ_________________¡£

2. Êý¾ÝµÄÂß¼­½á¹¹ÓÐËÄÖÖ»ù±¾ÐÎ̬£¬·Ö±ðÊÇ________________¡¢__________________¡¢__________________ºÍ__________________¡£

3. ÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼­¹ØÏµÊÇ__________________µÄ£¬·ÇÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼­¹ØÏµÊÇ__________________µÄ¡£

4. Ò»¸öËã·¨µÄЧÂʿɷÖΪ__________________ЧÂʺÍ__________________ЧÂÊ¡£

5. ÔÚÊ÷ÐͽṹÖУ¬Ê÷¸ù½áµãûÓÐ__________________½áµã£¬ÆäÓàÿ¸ö½áµãµÄÓÐÇÒÖ»ÓÐ__________________¸öǰÇ÷Çý½áµã£»Ò¶×Ó½áµãûÓÐ__________________½áµã£»ÆäÓàÿ¸ö½áµãµÄºóÐø½áµã¿ÉÒÔ__________________¡£

6. ÔÚͼÐͽṹÖУ¬Ã¿¸ö½áµãµÄǰÇ÷½áµãÊýºÍºóÐø½áµãÊý¿ÉÒÔ__________________¡£

7. ÏßÐԽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ£»Ê÷ÐͽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ£»Í¼ÐͽṹÖÐÔªËØÖ®¼ä´æÔÚ__________________¹ØÏµ¡£

8. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ____n*n______________¡£ for(i=0;i

for(j=0;j

A[i][j]=0;

9. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£ i=s=0; while(s

10. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ___n*n_______________¡£ s=0;

for(i=0;i

for(j=0;j

sum=s;

11. ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈÊÇ__________________¡£ i=1; while(i<=n)

i=i*3;

12. ºâÁ¿Ëã·¨ÕýÈ·ÐԵıê׼ͨ³£ÊÇ____________________________________¡£

13. Ë㷨ʱ¼ä¸´ÔӶȵķÖÎöͨ³£ÓÐÁ½ÖÖ·½·¨£¬¼´___________ºÍ___________µÄ·½·¨£¬Í¨³£ÎÒÃǶÔËã·¨Çóʱ¼ä¸´ÔÓ¶Èʱ£¬²ÉÓúóÒ»ÖÖ·½·¨¡£ Èý¡¢ÇóÏÂÁгÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È¡£

1. x=0;

-2-

for(i=1;i

for(j=i+1;j<=n;j++) x++;

2. x=0; for(i=1;i

for(j=1;j<=n-i;j++)

x++;

3. int i,j,k;

for(i=0;i

{ c[i][j]=0;

for(k=0;k

c[i][j]=a[i][k]*b[k][j]

}

4. i=n-1;

while((i>=0)&&A[i]!=k)) j--; return (i);

5. fact(n)

{ if(n<=1)

return (1);

else

return (n*fact(n-1));

}

ϰÌâ1²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. A 2. C 3. D 4. B 5. C¡¢A 6. C¡¢B 7. B 8. D 9. B ¶þ¡¢Ìî¿ÕÌâ

1. ÏßÐԽṹ£¬·ÇÏßÐԽṹ 2. ¼¯ºÏ£¬ÏßÐÔ£¬Ê÷£¬Í¼ 3. Ò»¶ÔÒ»£¬Ò»¶Ô¶à»ò¶à¶Ô¶à 4. ʱ¼ä£¬¿Õ¼ä

5. ǰÇ÷£¬Ò»£¬ºó¼Ì£¬¶à 6. Óжà¸ö

7. Ò»¶ÔÒ»£¬Ò»¶Ô¶à£¬¶à¶Ô¶à 8. O(n2)

10. B -3-

9. O(

n)

210. O(n) 11. O(log3n)

12. ³ÌÐò¶ÔÓÚ¾«ÐÄÉè¼ÆµÄµäÐͺϷ¨Êý¾ÝÊäÈëÄܵóö·ûºÏÒªÇóµÄ½á¹û¡£ 13. ʺóͳ¼Æ£¬ÊÂǰ¹À¼Æ Èý¡¢Ëã·¨Éè¼ÆÌâ

22

31. O(n) 2. O(n) 3. O(n) 4. O(n) 5. O(n)

ϰÌâ2

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. ÏßÐÔ±íÊÇ________¡£

A£®Ò»¸öÓÐÏÞÐòÁУ¬¿ÉÒÔΪ¿Õ C£®Ò»¸öÎÞÏÞÐòÁУ¬¿ÉÒÔΪ¿Õ A£®n-i

B£®n-i+l

B£®Ò»¸öÓÐÏÞÐòÁУ¬²»¿ÉÒÔΪ¿Õ D£®Ò»¸öÎÞÏÞÐòÁУ¬²»¿ÉÒÔΪ¿Õ

D£®i

2. ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò±íÖÐɾ³ýµÚi¸öÔªËØ(0<=i<=n)ʱ£¬ÐèÏòÇ°ÒÆ¶¯ ¸öÔªËØ¡£

C£®n-i-1

3. ÏßÐÔ±í²ÉÓÃÁ´Ê½´æ´¢Ê±£¬ÆäµØÖ·________¡£ A£®±ØÐëÊÇÁ¬ÐøµÄ

B£®Ò»¶¨ÊDz»Á¬ÐøµÄ D£®Á¬ÐøÓë·ñ¾ù¿ÉÒÔ

C£®²¿·ÖµØÖ·±ØÐëÊÇÁ¬ÐøµÄ ________¸öÔªËØ½áµã¡£

A£®n/2

B£®n

C£®£¨n+1£©/2

D£®£¨n-1£©/2

5. ÔÚË«ÏòÑ­»·Á´±íÖУ¬ÔÚpËùÖ¸µÄ½áµãÖ®ºó²åÈësÖ¸ÕëËùÖ¸µÄ½áµã£¬Æä²Ù×÷ÊÇ____¡£

A£® p->next=s; s->prior=p;

p->next->prior=s; s->next=p->next; B£® s->prior=p; s->next=p->next; p->next=s; p->next->prior=s; C£® p->next=s; p->next->prior=s; s->prior=p; s->next=p->next; D£® s->prior=p; s->next=p->next; p->next->prior=s; p->next=s;

6. Éèµ¥Á´±íÖÐÖ¸ÕëpÖ¸Ïò½áµãm£¬ÈôҪɾ³ýmÖ®ºóµÄ½áµã£¨Èô´æÔÚ£©£¬ÔòÐèÐÞ¸ÄÖ¸ÕëµÄ²Ù×÷Ϊ________¡£

A£®p->next=p->next->next; C£®p=p->next->next; ÔªËØ¡£

B£®p=p->next; D£®p->next=p;

4. ´ÓÒ»¸ö¾ßÓÐn¸ö½áµãµÄµ¥Á´±íÖвéÕÒÆäÖµµÈÓÚxµÄ½áµãʱ£¬ÔÚ²éÕҳɹ¦µÄÇé¿öÏ£¬ÐèÆ½¾ù±È½Ï

7. ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò±íÖÐÏòµÚi¸öÔªËØ(0< i

-4-

A£®n-i B£®n-i+l C£®n-i-1 D£®i

8. ÔÚÒ»¸öµ¥Á´±íÖУ¬ÒÑÖªq½áµãÊÇp½áµãµÄǰÇ÷½áµã£¬ÈôÔÚqºÍpÖ®¼ä²åÈës½áµã£¬ÔòÐëÖ´ÐÐ A£®s->next=p->next; p->next=s B£®q->next=s; s->next=p C£®p->next=s->next; s->next=p D£®p->next=s; s->next=q

9. ÒÔϹØÓÚÏßÐÔ±íµÄ˵·¨²»ÕýÈ·µÄÊÇ______¡£

A£®ÏßÐÔ±íÖеÄÊý¾ÝÔªËØ¿ÉÒÔÊÇÊý×Ö¡¢×Ö·û¡¢¼Ç¼µÈ²»Í¬ÀàÐÍ¡£ B£®ÏßÐÔ±íÖаüº¬µÄÊý¾ÝÔªËØ¸öÊý²»ÊÇÈÎÒâµÄ¡£

C£®ÏßÐÔ±íÖеÄÿ¸ö½áµã¶¼ÓÐÇÒÖ»ÓÐÒ»¸öÖ±½ÓǰÇ÷ºÍÖ±½Óºó¼Ì¡£ D£®´æÔÚÕâÑùµÄÏßÐÔ±í£º±íÖи÷½áµã¶¼Ã»ÓÐÖ±½ÓǰÇ÷ºÍÖ±½Óºó¼Ì¡£ 10. ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹ÊÇÒ»ÖÖ_______µÄ´æ´¢½á¹¹¡£ A£®Ëæ»ú´æÈ¡ A£®»ùµØÖ·

B£®Ë³Ðò´æÈ¡

C£®Ë÷Òý´æÈ¡

D£®É¢ÁдæÈ¡

11. ÔÚ˳Ðò±íÖУ¬Ö»ÒªÖªµÀ_______£¬¾Í¿ÉÔÚÏàͬʱ¼äÄÚÇó³öÈÎÒ»½áµãµÄ´æ´¢µØÖ·¡£

B£®½áµã´óС

C£®ÏòÁ¿´óС

D£®»ùµØÖ·ºÍ½áµã´óС B£®Ò»°ë D£®ËÄ·ÖÖ®Ò» B£®É¾³ý D£®¸ù¾ÝÔªËØÖµ²éÕÒ B£®O(n) D£®O(log2n) B£®B, C, D, E, A D£®E, D, C, B, A

12. ÔڵȸÅÂÊÇé¿öÏ£¬Ë³Ðò±íµÄ²åÈë²Ù×÷ÒªÒÆ¶¯______½áµã¡£ A£®È«²¿ C£®Èý·ÖÖ®Ò» A£®²åÈë C£®¸ù¾ÝÐòºÅ²éÕÒ A£®O(1) C£®O(n) A£®A, B, C, D, E C£®E, A, B, C, D

2

13. ÔÚ______ÔËËãÖУ¬Ê¹ÓÃ˳Ðò±í±ÈÁ´±íºÃ¡£

14. ÔÚÒ»¸ö¾ßÓÐn¸ö½áµãµÄÓÐÐòµ¥Á´±íÖвåÈëÒ»¸öнáµã²¢±£³Ö¸Ã±íÓÐÐòµÄʱ¼ä¸´ÔÓ¶ÈÊÇ_______¡£

15. ÉèÓÐÒ»¸öÕ»£¬ÔªËصĽøÕ»´ÎÐòΪA, B, C, D, E,ÏÂÁÐÊDz»¿ÉÄܵijöÕ»ÐòÁÐ__________¡£

16. ÔÚÒ»¸ö¾ßÓÐn¸öµ¥ÔªµÄ˳ÐòÕ»ÖУ¬¼Ù¶¨ÒÔµØÖ·µÍ¶Ë£¨¼´0µ¥Ôª£©×÷Ϊջµ×£¬ÒÔtop×÷Ϊջ¶¥Ö¸Õ룬µ±×ö³öÕ»´¦Àíʱ£¬top±ä»¯Îª______¡£

A£®top²»±ä

B£®top=0

C£®top-- D£®top++

17. ÏòÒ»¸öÕ»¶¥Ö¸ÕëΪhsµÄÁ´Õ»ÖвåÈëÒ»¸ös½áµãʱ£¬Ó¦Ö´ÐÐ______¡£ A£®hs->next=s; B£®s->next=hs; hs=s;

C£®s->next=hs->next;hs->next=s; D£®s->next=hs; hs=hs->next;

18. ÔÚ¾ßÓÐn¸öµ¥ÔªµÄ˳Ðò´æ´¢µÄÑ­»·¶ÓÁÐÖУ¬¼Ù¶¨frontºÍrear·Ö±ðΪ¶ÓÍ·Ö¸ÕëºÍ¶ÓβָÕ룬ÔòÅж϶ÓÂúµÄÌõ¼þΪ________¡£

-5-

A£®rear£¥n= = front B£®£¨front+l£©£¥n= = rear C£®rear£¥n -1= = front D£®(rear+l)£¥n= = front

19. ÔÚ¾ßÓÐn¸öµ¥ÔªµÄ˳Ðò´æ´¢µÄÑ­»·¶ÓÁÐÖУ¬¼Ù¶¨frontºÍrear·Ö±ðΪ¶ÓÍ·Ö¸ÕëºÍ¶ÓβָÕ룬ÔòÅж϶ӿյÄÌõ¼þΪ________¡£

A£®rear£¥n= = front B£®front+l= rear C£®rear= = front

D£®(rear+l)£¥n= front

20. ÔÚÒ»¸öÁ´¶ÓÁÐÖУ¬¼Ù¶¨frontºÍrear·Ö±ðΪ¶ÓÊ׺ͶÓβָÕ룬Ôòɾ³ýÒ»¸ö½áµãµÄ²Ù×÷Ϊ________¡£ A£®front=front->next B£®rear=rear->next C£®rear=front->next D£®front=rear->next ¶þ¡¢Ìî¿ÕÌâ

1. ÏßÐÔ±íÊÇÒ»ÖÖµäÐ͵Ä_________½á¹¹¡£

2. ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò±íµÄµÚi¸öÔªËØÖ®Ç°²åÈëÒ»¸öÔªËØ£¬ÐèÒªºóÒÆ____¸öÔªËØ¡£ 3. ˳Ðò±íÖÐÂß¼­ÉÏÏàÁÚµÄÔªËØµÄÎïÀíλÖÃ________¡£

4. Òª´ÓÒ»¸ö˳Ðò±íɾ³ýÒ»¸öÔªËØÊ±£¬±»É¾³ýÔªËØÖ®ºóµÄËùÓÐÔªËØ¾ùÐè_______Ò»¸öλÖã¬Òƶ¯¹ý³ÌÊÇ´Ó_______Ïò_______ÒÀ´ÎÒÆ¶¯Ã¿Ò»¸öÔªËØ¡£

5. ÔÚÏßÐÔ±íµÄ˳Ðò´æ´¢ÖУ¬ÔªËØÖ®¼äµÄÂß¼­¹ØÏµÊÇͨ¹ý_______¾ö¶¨µÄ£»ÔÚÏßÐÔ±íµÄÁ´½Ó´æ´¢ÖУ¬ÔªËØÖ®¼äµÄÂß¼­¹ØÏµÊÇͨ¹ý_______¾ö¶¨µÄ¡£

6. ÔÚË«ÏòÁ´±íÖУ¬Ã¿¸ö½áµãº¬ÓÐÁ½¸öÖ¸ÕëÓò£¬Ò»¸öÖ¸Ïò_______½áµã£¬ÁíÒ»¸öÖ¸Ïò_______½áµã¡£ 7. µ±¶ÔÒ»¸öÏßÐÔ±í¾­³£½øÐдæÈ¡²Ù×÷£¬¶øºÜÉÙ½øÐвåÈëºÍɾ³ý²Ù×÷ʱ£¬Ôò²ÉÓÃ_______´æ´¢½á¹¹ÎªÒË¡£Ïà·´£¬µ±¾­³£½øÐеÄÊDzåÈëºÍɾ³ý²Ù×÷ʱ£¬Ôò²ÉÓÃ_______´æ´¢½á¹¹ÎªÒË¡£

8. ˳Ðò±íÖÐÂß¼­ÉÏÏàÁÚµÄÔªËØ£¬ÎïÀíλÖÃ_______ÏàÁÚ£¬µ¥Á´±íÖÐÂß¼­ÉÏÏàÁÚµÄÔªËØ£¬ÎïÀíλÖÃ_______ÏàÁÚ¡£

9. ÏßÐÔ±í¡¢Õ»ºÍ¶ÓÁж¼ÊÇ_______½á¹¹£¬¿ÉÒÔÔÚÏßÐÔ±íµÄ______λÖòåÈëºÍɾ³ýÔªËØ£»¶ÔÓÚÕ»Ö»ÄÜÔÚ_______λÖòåÈëºÍɾ³ýÔªËØ£»¶ÔÓÚ¶ÓÁÐÖ»ÄÜÔÚ_______λÖòåÈëÔªËØºÍÔÚ_______λÖÃɾ³ýÔªËØ¡£

10. ¸ù¾ÝÏßÐÔ±íµÄÁ´Ê½´æ´¢½á¹¹ÖÐÿ¸ö½áµãËùº¬Ö¸ÕëµÄ¸öÊý£¬Á´±í¿É·ÖΪ_________ºÍ_______£»¶ø¸ù¾ÝÖ¸ÕëµÄÁª½Ó·½Ê½£¬Á´±íÓÖ¿É·ÖΪ________ºÍ_________¡£

11. ÔÚµ¥Á´±íÖÐÉèÖÃÍ·½áµãµÄ×÷ÓÃÊÇ________¡£

12. ¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö½áµãµÄµ¥Á´±í£¬ÔÚÒÑÖªµÄ½áµãpºó²åÈëÒ»¸öнáµãµÄʱ¼ä¸´ÔÓ¶ÈΪ______£¬ÔÚ¸ø¶¨ÖµÎªxµÄ½áµãºó²åÈëÒ»¸öнáµãµÄʱ¼ä¸´ÔÓ¶ÈΪ_______¡£

13. ¶ÔÓÚÒ»¸öÕ»×÷½øÕ»ÔËËãʱ£¬Ó¦ÏÈÅбðÕ»ÊÇ·ñΪ_______£¬×÷ÍËÕ»ÔËËãʱ£¬Ó¦ÏÈÅбðÕ»ÊÇ·ñΪ_______£¬µ±Õ»ÖÐÔªËØÎªmʱ£¬×÷½øÕ»ÔËËãʱ·¢ÉúÉÏÒ磬Ôò˵Ã÷Õ»µÄ¿ÉÓÃ×î´óÈÝÁ¿Îª_______¡£ÎªÁËÔö¼ÓÄÚ´æ¿Õ¼äµÄÀûÓÃÂʺͼõÉÙ·¢ÉúÉÏÒçµÄ¿ÉÄÜÐÔ£¬ÓÉÁ½¸öÕ»¹²ÏíһƬÁ¬ÐøµÄÄÚ´æ¿Õ¼äʱ£¬Ó¦½«Á½Õ»µÄ_______·Ö±ðÉèÔÚÕâÆ¬ÄÚ´æ¿Õ¼äµÄÁ½¶Ë£¬ÕâÑùÖ»Óе±_______ʱ²Å²úÉúÉÏÒç¡£

14. ÉèÓÐÒ»¿ÕÕ»£¬ÏÖÓÐÊäÈëÐòÁÐ1£¬2£¬3£¬4£¬5£¬¾­¹ýpush, push, pop, push, pop, push, pushºó£¬Êä³öÐòÁÐÊÇ_________¡£

15. ÎÞÂÛ¶ÔÓÚ˳Ðò´æ´¢»¹ÊÇÁ´Ê½´æ´¢µÄÕ»ºÍ¶ÓÁÐÀ´Ëµ£¬½øÐвåÈë»òɾ³ýÔËËãµÄʱ¼ä¸´ÔӶȾùÏàͬΪ__________¡£

-6-

Èý¡¢¼ò´ðÌâ

1. ÃèÊöÒÔÏÂÈý¸ö¸ÅÄîµÄÇø±ð£ºÍ·Ö¸Õ룬ͷ½áµã£¬±íÍ·½áµã¡£ 2. ÏßÐÔ±íµÄÁ½ÖÖ´æ´¢½á¹¹¸÷ÓÐÄÄЩÓÅȱµã£¿

3. ¶ÔÓÚÏßÐÔ±íµÄÁ½ÖÖ´æ´¢½á¹¹£¬Èç¹ûÓÐn¸öÏßÐÔ±íͬʱ²¢´æ£¬¶øÇÒÔÚ´¦Àí¹ý³ÌÖи÷±íµÄ³¤¶È»á¶¯Ì¬·¢Éú±ä»¯£¬ÏßÐÔ±íµÄ×ÜÊýÒ²»á×Ô¶¯¸Ä±ä£¬ÔÚ´ËÇé¿öÏ£¬Ó¦Ñ¡ÓÃÄÄÒ»ÖÖ´æ´¢½á¹¹£¿ÎªÊ²Ã´£¿

4. ¶ÔÓÚÏßÐÔ±íµÄÁ½ÖÖ´æ´¢½á¹¹£¬ÈôÏßÐÔ±íµÄ×ÜÊý»ù±¾Îȶ¨£¬ÇÒºÜÉÙ½øÐвåÈëºÍɾ³ý²Ù×÷£¬µ«ÒªÇóÒÔ×î¿ìµÄËÙ¶È´æÈ¡ÏßÐÔ±íÖеÄÔªËØ£¬Ó¦Ñ¡ÓúÎÖÖ´æ´¢½á¹¹£¿ÊÔ˵Ã÷ÀíÓÉ¡£

5. ÔÚµ¥Ñ­»·Á´±íÖÐÉèÖÃβָÕë±ÈÉèÖÃÍ·Ö¸ÕëºÃÂð£¿ÎªÊ²Ã´?

6. ¼Ù¶¨ÓÐËĸöÔªËØA, B, C, DÒÀ´Î½øÕ»£¬½øÕ»¹ý³ÌÖÐÔÊÐí³öÕ»£¬ÊÔд³öËùÓпÉÄܵijöÕ»ÐòÁС£ 7. ʲôÊǶÓÁеÄÉÏÒçÏÖÏó£¿Ò»°ãÓм¸ÖÖ½â¾ö·½·¨£¬ÊÔ¼òÊöÖ®¡£ 8. ÏÂÊöËã·¨µÄ¹¦ÄÜÊÇʲô? LinkList *Demo(LinkList *L) { // LÊÇÎÞÍ·½áµãµÄµ¥Á´±í

LinkList *q,*p; if(L&&L->next) { q=L; L=L->next; p=L;

while (p->next)

p=p->next;

p->next=q; q->next=NULL; } return (L); }

ËÄ¡¢Ëã·¨Éè¼ÆÌâ

1. Éè¼ÆÔÚÎÞÍ·½áµãµÄµ¥Á´±íÖÐɾ³ýµÚi¸ö½áµãµÄËã·¨¡£ 2. ÔÚµ¥Á´±íÉÏʵÏÖÏßÐÔ±íµÄÇó±í³¤ListLength(L)ÔËËã¡£ 3. Éè¼Æ½«´ø±íÍ·µÄÁ´±íÄæÖÃËã·¨¡£

4. ¼ÙÉèÓÐÒ»¸ö´ø±íÍ·½áµãµÄÁ´±í£¬±íÍ·Ö¸ÕëΪhead£¬Ã¿¸ö½áµãº¬Èý¸öÓò£ºdata, nextºÍprior¡£ÆäÖÐdataΪÕûÐÍÊýÓò£¬nextºÍprior¾ùΪָÕëÓò¡£ÏÖÔÚËùÓнáµãÒѾ­ÓÉnextÓòÁ¬½ÓÆðÀ´£¬ÊÔ±àÒ»¸öËã·¨£¬ÀûÓÃpriorÓò£¨´ËÓò³õֵΪNULL£©°ÑËùÓнáµã°´ÕÕÆäÖµ´ÓСµ½´óµÄ˳ÐòÁ´½ÓÆðÀ´¡£

5. ÒÑÖªÏßÐÔ±íµÄÔªËØ°´µÝÔö˳ÐòÅÅÁУ¬²¢ÒÔ´øÍ·½áµãµÄµ¥Á´±í×÷´æ´¢½á¹¹¡£ÊÔ±àдһ¸öɾ³ý±íÖÐËùÓÐÖµ´óÓÚminÇÒСÓÚmaxµÄÔªËØ£¨Èô±íÖдæÔÚÕâÑùµÄÔªËØ£©µÄËã·¨¡£

6. ÒÑÖªÏßÐÔ±íµÄÔªËØÊÇÎÞÐòµÄ£¬ÇÒÒÔ´øÍ·½áµãµÄµ¥Á´±í×÷Ϊ´æ´¢½á¹¹¡£Éè¼ÆÒ»¸öɾ³ý±íÖÐËùÓÐֵСÓÚmaxµ«´óÓÚminµÄÔªËØµÄËã·¨¡£

7. ¼Ù¶¨ÓÃÒ»¸öµ¥Ñ­»·Á´±íÀ´±íʾ¶ÓÁУ¨Ò²³ÆÎªÑ­»·¶ÓÁУ©£¬¸Ã¶ÓÁÐÖ»ÉèÒ»¸ö¶ÓβָÕ룬²»Éè¶ÓÊ×Ö¸Õ룬ÊÔ±àдÏÂÁи÷ÖÖÔËËãµÄËã·¨£º

£¨1£©ÏòÑ­»·Á´¶ÓÁвåÈëÒ»¸öÔªËØÖµÎªxµÄ½áµã£» £¨2£©´ÓÑ­»·Á´¶ÓÁÐÖÐɾ³ýÒ»¸ö½áµã¡£

-7-

8. Éè˳Ðò±íLÊÇÒ»¸öµÝ¼õÓÐÐò±í£¬ÊÔдһËã·¨£¬½«x²åÈëÆäºóÈÔ±£³ÖLµÄÓÐÐòÐÔ¡£

ϰÌâ2²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1£®A 2£®A 3£®D 4£®C 5£®D 6£®A 7£®B 8£®B 9£®C 10£®A 11£®D 12£®B 13£®C 14£®B 15£®C 16£®C 17£®B 18£®D 19£®C 20£®A ¶þ¡¢Ìî¿ÕÌâ 1£®ÏßÐÔ 2£®n-i+1 3£®ÏàÁÚ 4£®Ç°ÒÆ£¬Ç°£¬ºó

5£®ÎïÀí´æ´¢Î»Öã¬Á´ÓòµÄÖ¸ÕëÖµ 6£®Ç°Ç÷£¬ºó¼Ì

7£®Ë³Ðò£¬Á´½Ó 8£®Ò»¶¨£¬²»Ò»¶¨

9£®ÏßÐÔ£¬ÈκΣ¬Õ»¶¥£¬¶Ó⣬¶ÓÍ·

10£®µ¥Á´±í£¬Ë«Á´±í£¬·ÇÑ­»·Á´±í£¬Ñ­»·Á´±í 11£®Ê¹¿Õ±íºÍ·Ç¿Õ±íͳһ£»Ëã·¨´¦ÀíÒ»Ö 12£®O(1)£¬O(n)

13£®Õ»Âú£¬Õ»¿Õ£¬m£¬Õ»µ×£¬Á½¸öÕ»µÄÕ»¶¥ÔÚÕ»¿Õ¼äµÄijһλÖÃÏàÓö 14£®2¡¢3 15£®O(1) Èý¡¢¼ò´ðÌâ

1£®Í·Ö¸ÕëÊÇÖ¸ÏòÁ´±íÖеÚÒ»¸ö½áµã£¨¼´±íÍ·½áµã£©µÄÖ¸Õ룻ÔÚ±íÍ·½áµã֮ǰ¸½ÉèµÄ½áµã³ÆÎªÍ·½áµã£»±íÍ·½áµãΪÁ´±íÖд洢ÏßÐÔ±íÖеÚÒ»¸öÊý¾ÝÔªËØµÄ½áµã¡£ÈôÁ´±íÖи½ÉèÍ·½áµã£¬Ôò²»¹ÜÏßÐÔ±íÊÇ·ñΪ¿Õ±í£¬Í·Ö¸Õë¾ù²»Îª¿Õ£¬·ñÔò±íʾ¿Õ±íµÄÁ´±íµÄÍ·Ö¸ÕëΪ¿Õ¡£

2£®ÏßÐÔ±í¾ßÓÐÁ½ÖÖ´æ´¢½á¹¹¼´Ë³Ðò´æ´¢½á¹¹ºÍÁ´½Ó´æ´¢½á¹¹¡£ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹¿ÉÒÔÖ±½Ó´æÈ¡Êý¾ÝÔªËØ£¬·½±ãÁé»î¡¢Ð§Âʸߣ¬µ«²åÈ롢ɾ³ý²Ù×÷ʱ½«»áÒýÆðÔªËØµÄ´óÁ¿Òƶ¯£¬Òò¶ø½µµÍЧÂÊ£º¶øÔÚÁ´½Ó´æ´¢½á¹¹ÖÐÄÚ´æ²ÉÓö¯Ì¬·ÖÅ䣬ÀûÓÃÂʸߣ¬µ«ÐèÔöÉèָʾ½áµãÖ®¼ä¹ØÏµµÄÖ¸ÕëÓò£¬´æÈ¡Êý¾ÝÔªËØ²»Èç˳Ðò´æ´¢·½±ã£¬µ«½áµãµÄ²åÈ롢ɾ³ý²Ù×÷½Ï¼òµ¥¡£

3£®Ó¦Ñ¡ÓÃÁ´½Ó´æ´¢½á¹¹£¬ÒòΪÁ´Ê½´æ´¢½á¹¹ÊÇÓÃÒ»×éÈÎÒâµÄ´æ´¢µ¥ÔªÒÀ´Î´æ´¢ÏßÐÔ±íÖеĸ÷ÔªËØ£¬ÕâÀï´æ´¢µ¥Ôª¿ÉÒÔÊÇÁ¬ÐøµÄ£¬Ò²¿ÉÒÔÊDz»Á¬ÐøµÄ£ºÕâÖÖ´æ´¢½á¹¹¶ÔÓÚÔªËØµÄɾ³ý»ò²åÈëÔËËãÊDz»ÐèÒªÒÆ¶¯ÔªËصģ¬Ö»ÐèÐÞ¸ÄÖ¸Õë¼´¿É£¬ËùÒÔºÜÈÝÒ×ʵÏÖ±íµÄÈÝÁ¿µÄÀ©³ä¡£

4£®Ó¦Ñ¡ÓÃ˳Ðò´æ´¢½á¹¹£¬ÒòΪÿ¸öÊý¾ÝÔªËØµÄ´æ´¢Î»ÖúÍÏßÐÔ±íµÄÆðʼλÖÃÏà²îÒ»¸öºÍÊý¾ÝÔªËØÔÚÏßÐÔ±íÖеÄÐòºÅ³ÉÕý±ÈµÄ³£Êý¡£Òò´Ë£¬Ö»ÒªÈ·¶¨ÁËÆäÆðʼλÖã¬ÏßÐÔ±íÖеÄÈÎÒ»¸öÊý¾ÝÔªËØ¶¼¿ÉËæ»ú´æÈ¡£¬Òò´Ë£¬ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹ÊÇÒ»ÖÖËæ»ú´æÈ¡µÄ´æ´¢½á¹¹£¬¶øÁ´±íÔòÊÇÒ»ÖÖ˳Ðò´æÈ¡µÄ´æ´¢½á¹¹¡£

5£®ÉèβָÕë±ÈÉèÍ·Ö¸ÕëºÃ¡£Î²Ö¸ÕëÊÇÖ¸ÏòÖն˽áµãµÄÖ¸Õ룬ÓÃËüÀ´±íʾµ¥Ñ­»·Á´±í¿ÉÒÔʹµÃ²éÕÒÁ´

-8-

±íµÄ¿ªÊ¼½áµãºÍÖն˽áµã¶¼ºÜ·½±ã£¬ÉèÒ»´øÍ·½áµãµÄµ¥Ñ­»·Á´±í£¬ÆäβָÕëΪrear£¬Ôò¿ªÊ¼½áµãºÍÖն˽áµãµÄλÖ÷ֱðÊÇrear->next->next ºÍ rear, ²éÕÒʱ¼ä¶¼ÊÇO(1)¡£ÈôÓÃÍ·Ö¸ÕëÀ´±íʾ¸ÃÁ´±í£¬Ôò²éÕÒÖն˽áµãµÄʱ¼äΪO(n)¡£

6£®¹²ÓÐ14ÖÖ¿ÉÄܵijöÕ»ÐòÁУ¬¼´Îª£º

ABCD, ABDC£¬ACBD, ACDB£¬BACD£¬ADCB£¬BADC£¬BCAD, BCDA£¬BDCA,CBAD, CBDA£¬CDBA, DCBA

7£®ÔÚ¶ÓÁеÄ˳Ðò´æ´¢½á¹¹ÖУ¬Éè¶ÓÍ·Ö¸ÕëΪfront£¬¶ÓβָÕëΪrear£¬¶ÓÁеÄÈÝÁ¿£¨¼´´æ´¢µÄ¿Õ¼ä´óС£©Îªmaxnum¡£µ±ÓÐÔªËØÒª¼ÓÈë¶ÓÁУ¨¼´Èë¶Ó£©Ê±£¬Èôrear=maxnum£¬Ôò»á·¢Éú¶ÓÁеÄÉÏÒçÏÖÏ󣬴Ëʱ¾Í²»Äܽ«¸ÃÔªËØ¼ÓÈë¶ÓÁС£¶ÔÓÚ¶ÓÁУ¬»¹ÓÐÒ»ÖÖ¡°¼ÙÒç³ö¡±ÏÖÏ󣬶ÓÁÐÖÐÉÐÓàÓÐ×ã¹»µÄ¿Õ¼ä£¬µ«ÔªËØÈ´²»ÄÜÈë¶Ó£¬Ò»°ãÊÇÓÉÓÚ¶ÓÁеĴ洢½á¹¹»ò²Ù×÷·½Ê½µÄÑ¡Ôñ²»µ±ËùÖ£¬¿ÉÒÔÓÃÑ­»·¶ÓÁнâ¾ö¡£ Ò»°ãµØ£¬Òª½â¾ö¶ÓÁеÄÉÏÒçÏÖÏó¿ÉÓÐÒÔϼ¸ÖÖ·½·¨£º

£¨1£©¿É½¨Á¢Ò»¸ö×ã¹»´óµÄ´æ´¢¿Õ¼äÒÔ±ÜÃâÒç³ö£¬µ«ÕâÑù×öÍùÍù»áÔì³É¿Õ¼äʹÓÃÂʵͣ¬ÀË·Ñ´æ´¢¿Õ¼ä¡£ £¨2£©Òª±ÜÃâ³öÏÖ¡°¼ÙÒç³ö¡±ÏÖÏó¿ÉÓÃÒÔÏ·½·¨½â¾ö£º

µÚÒ»ÖÖ£º²ÉÓÃÒÆ¶¯ÔªËصķ½·¨¡£Ã¿µ±ÓÐÒ»¸öÐÂÔªËØÈë¶Ó£¬¾Í½«¶ÓÁÐÖÐÒÑÓеÄÔªËØÏò¶ÓÍ·ÒÆ¶¯Ò»¸öλÖ㬼ٶ¨¿ÕÓà¿Õ¼ä×ã¹»¡£

µÚ¶þÖÖ£ºÃ¿µ±É¾È¥Ò»¸ö¶ÓÍ·ÔªËØ£¬Ôò¿ÉÒÀ´ÎÒÆ¶¯¶ÓÁÐÖеÄÔªËØ×ÜÊÇʹfrontÖ¸ÕëÖ¸Ïò¶ÓÁÐÖеĵÚÒ»¸öλÖá£

µÚÈýÖÖ£º²ÉÓÃÑ­»·¶ÓÁз½Ê½¡£½«¶ÓÍ·¡¢¶Óβ¿´×÷ÊÇÒ»¸öÊ×βÏà½ÓµÄÑ­»·¶ÓÁУ¬¼´ÓÃÑ­»·Êý×éʵÏÖ£¬´Ëʱ¶ÓÊ×ÈÔÔÚ¶Óβ֮ǰ£¬×÷²åÈëºÍɾ³ýÔËËãʱÈÔ×ñÑ­¡°ÏȽøÏȳö¡±µÄÔ­Ôò¡£

8£®¸ÃËã·¨µÄ¹¦ÄÜÊÇ£º½«¿ªÊ¼½áµãÕªÏÂÁ´½Óµ½Öն˽áµãÖ®ºó³ÉΪеÄÖն˽áµã£¬¶øÔ­À´µÄµÚ¶þ¸ö½áµã³ÉΪеĿªÊ¼½áµã£¬·µ»ØÐÂÁ´±íµÄÍ·Ö¸Õë¡£ ËÄ¡¢Ëã·¨Éè¼ÆÌâ

1£®Ë㷨˼ÏëΪ£º

£¨1£©Ó¦ÅжÏɾ³ýλÖõĺϷ¨ÐÔ£¬µ±i<0»òi>n-1ʱ£¬²»ÔÊÐí½øÐÐɾ³ý²Ù×÷£» £¨2£©µ±i=0ʱ£¬É¾³ýµÚÒ»¸ö½áµã£º

£¨3£©µ±£°

{ //ÔÚÎÞÍ·½áµãµÄµ¥Á´±íÖÐɾ³ýµÚi¸ö½áµã LinkList *p,*s; int j; if(i<0)

printf(\ else if(i= =0) { s=q; q=q->next; free(s); }

-9-

else

{ j=0; s=q;

while((jnext;

j++; }

if (s= =NULL)

printf(\ delete\

else

{ p->next=s->next; free(s); } }

}

2£®ÓÉÓÚÔÚµ¥Á´±íÖÐÖ»¸ø³öÒ»¸öÍ·Ö¸Õ룬ËùÒÔÖ»ÄÜÓñéÀúµÄ·½·¨À´Êýµ¥Á´±íÖеĽáµã¸öÊýÁË¡£Ëã·¨ÃèÊöÈçÏ£º

int ListLength ( LinkList *L ) { //Çó´øÍ·½áµãµÄµ¥Á´±íµÄ±í³¤ int len=0; ListList *p; p=L;

while ( p->next!=NULL )

{ p=p->next;

len++; }

return (len);

}

3£®É赥ѭ»·Á´±íµÄÍ·Ö¸ÕëΪhead£¬ÀàÐÍΪLinkList¡£ÄæÖÃʱÐ轫ÿһ¸ö½áµãµÄÖ¸ÕëÓò×÷ÒÔÐ޸ģ¬Ê¹ÆäԭǰÇ÷½áµã³ÉΪºó¼Ì¡£ÈçÒª¸ü¸Äq½áµãµÄÖ¸ÕëÓòʱ£¬ÉèsÖ¸ÏòÆäԭǰÇ÷½áµã£¬pÖ¸ÏòÆäÔ­ºó¼Ì½áµã£¬ÔòÖ»Ðè½øÐÐq->next=s;²Ù×÷¼´¿É£¬Ëã·¨ÃèÊöÈçÏ£º void invert(LinkList *head)

{ //ÄæÖÃheadÖ¸ÕëËùÖ¸ÏòµÄµ¥Ñ­»·Á´±í

linklist *p, *q, *s;

q=head; p=head->next;

while (p!=head) //µ±±í²»Îª¿Õʱ£¬Öð¸ö½áµãÄæÖà { s=q;

-10-

q=p; p=p->next; q->next=s; } p->next=q; }

4£®¶¨ÒåÀàÐÍLinkListÈçÏ£º typedef struct node { int data;

struct node *next,*prior; }LinkList;

´ËÌâ¿É²ÉÓòåÈëÅÅÐòµÄ·½·¨£¬ÉèpÖ¸Ïò´ý²åÈëµÄ½áµã£¬ÓÃqËÑË÷ÒÑÓÉpriorÓòÁ´½ÓµÄÓÐÐò±íÕÒµ½ºÏÊÊλÖý«p½áµãÁ´Èë¡£Ëã·¨ÃèÊöÈçÏ£º insert (LinkList *head) { LinkList *p,*s,*q;

p=head->next; //pÖ¸Ïò´ý²åÈëµÄ½áµã£¬³õʼʱָÏòµÚÒ»¸ö½áµã while(p!=NULL)

{ s=head; // sÖ¸Ïòq½áµãµÄǰÇ÷½áµã

q=head->prior; //qÖ¸ÏòÓÉpriorÓò¹¹³ÉµÄÁ´±íÖдý±È½ÏµÄ½áµã

while((q!=NULL) && (p->data>q->data)) //²éÕÒ²åÈë½áµãpµÄºÏÊʵIJåÈëλÖÃ

{ s=q;

q=q->prior; } s->prior=p;

p->prior=q; //½áµãp²åÈëµ½½áµãsºÍ½áµãqÖ®¼ä p=p->next;

} }

5£®Ëã·¨ÃèÊöÈçÏ£º

delete(LinkList *head, int max, int min)

{ linklist *p, *q;

if (head!=NULL) { q=head; p=head->next;

while((p!=NULL) && (p->data<=min)) { q=p;

p=p->next; }

-11-

while((p!=NULL) && (p->data

p=p->next; q->next=p;

}

}

6£®Ëã·¨ÃèÊöÈçÏ£º

delete(LinkList *head, int max, int min)

{ LinkList *p,*q;

q=head; p=head->next; while (p!=NULL)

if((p->data<=min) || (p->data>=max)) { q=p; p=p->next;

}

else

{ q->next=p->next;

free(p); p=q->next; }

}

7£®±¾ÌâÊǶÔÒ»¸öÑ­»·Á´¶ÓÁÐ×ö²åÈëºÍɾ³ýÔËË㣬¼ÙÉè²»ÐèÒª±£Áô±»É¾½áµãµÄÖµºÍ²»ÐèÒª»ØÊÕ½áµã£¬Ëã·¨ÃèÊöÈçÏ£º

£¨1£©²åÈ루¼´Èë¶Ó£©Ëã·¨£º insert(LinkList *rear, elemtype x)

{ //ÉèÑ­»·Á´¶ÓÁеĶÓβָÕëΪrear,xΪ´ý²åÈëµÄÔªËØ LinkList *p;

p=(LinkList *)malloc(sizeof(LinkList));

if(rear= =NULL) //ÈçΪ¿Õ¶Ó£¬½¨Á¢Ñ­»·Á´¶ÓÁеĵÚÒ»¸ö½áµã { rear=p;

rear->next=p; //Á´½Ó³ÉÑ­»·Á´±í }

else //·ñÔòÔÚ¶Óβ²åÈëp½áµã

{ p->next=rear->next;

rear->next=p;

rear=p;

}

}

-12-

£¨2£©É¾³ý£¨¼´³ö¶Ó£©Ëã·¨£º delete(LinkList *rear)

{ //ÉèÑ­»·Á´¶ÓÁеĶÓβָÕëΪrear

if (rear= =NULL) //¿Õ¶Ó

printf(\

if(rear->next= =rear) //¶ÓÖÐÖ»ÓÐÒ»¸ö½áµã rear=NULL; else

rear->next=rear->next->next; //rear->nextÖ¸ÏòµÄ½áµãΪѭ»·Á´¶ÓÁеĶÓÍ·½áµã

}

8£®Ö»Òª´ÓÖն˽áµã¿ªÊ¼ÍùǰÕÒµ½µÚÒ»¸ö±Èx´ó(»òÏàµÈ)µÄ½áµãÊý¾Ý£¬ÔÚÕâ¸öλÖòåÈë¾Í¿ÉÒÔÁË¡£Ëã·¨ÃèÊöÈçÏ£º

int InsertDecreaseList( SqList *L, elemtype x ) { int i;

if ( (*L).len>= maxlen) { printf(¡°overflow\ return(0); }

for ( i=(*L).len ; i>0 && (*L).elem[ i-1 ] < x ; i--)

(*L).elem[ i ]=(*L).elem[ i-1 ] ; // ±È½Ï²¢Òƶ¯ÔªËØ (*L).elem[ i ] =x; (*L).len++;

return(1);

}

ϰÌâ3

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. ¿Õ´®Óë¿Õ¸ñ×Ö·û×é³ÉµÄ´®µÄÇø±ðÔÚÓÚ£¨ £©¡£

A.ûÓÐÇø±ð C.Á½´®µÄ³¤¶ÈÏàµÈ

B.Á½´®µÄ³¤¶È²»ÏàµÈ

D.Á½´®°üº¬µÄ×Ö·û²»Ïàͬ

2. Ò»¸ö×Ó´®ÔÚ°üº¬ËüµÄÖ÷´®ÖеÄλÖÃÊÇÖ¸£¨ £©¡£

A.×Ó´®µÄ×îºóÄǸö×Ö·ûÔÚÖ÷´®ÖеÄλÖà B.×Ó´®µÄ×îºóÄǸö×Ö·ûÔÚÖ÷´®ÖÐÊ״γöÏÖµÄλÖà C.×Ó´®µÄµÚÒ»¸ö×Ö·ûÔÚÖ÷´®ÖеÄλÖà D.×Ó´®µÄµÚÒ»¸ö×Ö·ûÔÚÖ÷´®ÖÐÊ״γöÏÖµÄλÖÃ

3. ÏÂÃæµÄ˵·¨ÖУ¬Ö»ÓУ¨ £©ÊÇÕýÈ·µÄ¡£

A.×Ö·û´®µÄ³¤¶ÈÊÇÖ¸´®Öаüº¬µÄ×ÖĸµÄ¸öÊý B.×Ö·û´®µÄ³¤¶ÈÊÇÖ¸´®Öаüº¬µÄ²»Í¬×Ö·ûµÄ¸öÊý

-13-

C.ÈôT°üº¬ÔÚSÖУ¬ÔòTÒ»¶¨ÊÇSµÄÒ»¸ö×Ó´® D.Ò»¸ö×Ö·û´®²»ÄÜ˵ÊÇÆä×ÔÉíµÄÒ»¸ö×Ó´®

4. Á½¸ö×Ö·û´®ÏàµÈµÄÌõ¼þÊÇ£¨ £©¡£

A.Á½´®µÄ³¤¶ÈÏàµÈ B.Á½´®°üº¬µÄ×Ö·ûÏàͬ

C.Á½´®µÄ³¤¶ÈÏàµÈ£¬²¢ÇÒÁ½´®°üº¬µÄ×Ö·ûÏàͬ D.Á½´®µÄ³¤¶ÈÏàµÈ£¬²¢ÇÒ¶ÔӦλÖÃÉϵÄ×Ö·ûÏàͬ

5. ÈôSUBSTR£¨S£¬i£¬k£©±íʾÇóSÖдӵÚi¸ö×Ö·û¿ªÊ¼µÄÁ¬Ðøk¸ö×Ö·û×é³ÉµÄ×Ó´®µÄ²Ù×÷£¬Ôò¶ÔÓÚS=¡°Beijing£¦Nanjing¡±£¬SUBSTR£¨S£¬4£¬5£©=£¨ £©¡£

A. ¡°ijing¡± C. ¡°ingNa¡±

£¨S£¬T£©=£¨ £©¡£

A.2 B.3 C.4 D.5

7. ÈôREPLACE£¨S£¬S1£¬S2£©±íʾÓÃ×Ö·û´®S2Ìæ»»×Ö·û´®SÖеÄ×Ó´®S1µÄ²Ù×÷£¬Ôò¶ÔÓÚS=¡°Beijing£¦Nanjing¡±£¬S1=¡°Beijing¡±£¬S2=¡°Shanghai¡±£¬REPLACE£¨S£¬S1£¬S2£©=£¨ £©¡£

A. ¡°Nanjing£¦Shanghai¡± C. ¡°ShanghaiNanjing¡±

B. ¡°Nanjing£¦Nanjing¡± D. ¡°Shanghai£¦Nanjing¡±

B. ¡°jing£¦¡± D. ¡°ing£¦N¡±

6. ÈôINDEX£¨S£¬T£©±íʾÇóTÔÚSÖеÄλÖõIJÙ×÷£¬Ôò¶ÔÓÚS=¡°Beijing£¦Nanjing¡±£¬T=¡°jing¡±£¬INDEX

8. ÔÚ³¤¶ÈΪnµÄ×Ö·û´®SµÄµÚi¸öλÖòåÈëÁíÍâÒ»¸ö×Ö·û´®£¬iµÄºÏ·¨ÖµÓ¦¸ÃÊÇ£¨ £©¡£

A.i£¾0 B. i¡Ün C.1¡Üi¡Ün D.1¡Üi¡Ün+1

9. ×Ö·û´®²ÉÓýáµã´óСΪ1µÄÁ´±í×÷ΪÆä´æ´¢½á¹¹£¬ÊÇÖ¸£¨ £©¡£

A.Á´±íµÄ³¤¶ÈΪ1 B.Á´±íÖÐÖ»´æ·Å1¸ö×Ö·û

C.Á´±íµÄÿ¸öÁ´½áµãµÄÊý¾ÝÓòÖв»½öÖ»´æ·ÅÁËÒ»¸ö×Ö·û D.Á´±íµÄÿ¸öÁ´½áµãµÄÊý¾ÝÓòÖÐÖ»´æ·ÅÁËÒ»¸ö×Ö·û

¶þ¡¢Ìî¿ÕÌâ

1. ¼ÆËã»úÈí¼þϵͳÖУ¬ÓÐÁ½ÖÖ´¦Àí×Ö·û´®³¤¶ÈµÄ·½·¨£ºÒ»ÖÖÊÇ___________£¬µÚ¶þÖÖÊÇ___________________¡£

2. Á½¸ö×Ö·û´®ÏàµÈµÄ³äÒªÌõ¼þÊÇ_____________________ºÍ___________________¡£

3. Éè×Ö·û´®S1= ¡°ABCDEF¡±£¬S2= ¡°PQRS¡±£¬ÔòÔËËãS=CONCAT£¨SUB£¨S1£¬2£¬LEN£¨S2£©£©£¬SUB£¨S1£¬LEN£¨S2£©£¬2£©£©ºóµÄ´®ÖµÎª___________________¡£

4. ´®ÊÇÖ¸___________________¡£

5. ¿Õ´®ÊÇÖ¸___________________£¬¿Õ¸ñ´®ÊÇÖ¸___________________¡£ Èý¡¢Ëã·¨Éè¼ÆÌâ

1. ÉèÓÐÒ»¸ö³¤¶ÈΪsµÄ×Ö·û´®£¬Æä×Ö·û˳Ðò´æ·ÅÔÚÒ»¸öһάÊý×éµÄµÚ1ÖÁµÚs¸öµ¥ÔªÖУ¨Ã¿¸öµ¥Ôª´æ·ÅÒ»¸ö×Ö·û£©¡£ÏÖÒªÇó´Ó´Ë´®µÄµÚm¸ö×Ö·ûÒÔºóɾ³ý³¤¶ÈΪtµÄ×Ó´®£¬m

-14-

2. ÉèsºÍtÊDZíʾ³Éµ¥Á´±íµÄÁ½¸ö´®£¬ÊÔ±àдһ¸öÕÒ³ösÖеÚ1¸ö²»ÔÚtÖгöÏÖµÄ×Ö·û£¨¼Ù¶¨Ã¿¸ö½áµãÖ»´æ·Å1¸ö×Ö·û£©µÄËã·¨¡£

ϰÌâ3²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1£®B 2£®D 3£®C 4£®D 5£®B 6£®C 7£®D 8£®C 9£®D ¶þ¡¢Ìî¿ÕÌâ

1. ¹Ì¶¨³¤¶È£¬ÉèÖó¤¶ÈÖ¸Õë

2. Á½¸ö´®µÄ³¤¶ÈÏàµÈ£¬¶ÔӦλÖõÄ×Ö·ûÏàµÈ 3. ¡°BCDEDE¡±

4. º¬n¸ö×Ö·ûµÄÓÐÏÞÐòÁÐ £¨n¡Ý0£©

5. ²»º¬ÈκÎ×Ö·ûµÄ´®£¬½öº¬¿Õ¸ñ×Ö·ûµÄ×Ö·û´® Èý¡¢Ëã·¨Éè¼ÆÌâ 1£®Ëã·¨ÃèÊöΪ£º

int delete(r,s,t,m) //´Ó´®µÄµÚm¸ö×Ö·ûÒÔºóɾ³ý³¤¶ÈΪtµÄ×Ó´® char r[ ]; int s,t,m; { int i,j;

for(i=1;i<=m;i++)

r[s+i]=r[i];

for(j=m+t-i;j<=s;j++)

r[s-t+j]=r[j]; return (1);

} //delete 2£®Ë㷨˼ÏëΪ£º

£¨1£©Á´±ísÖÐÈ¡³öÒ»¸ö×Ö·û£»½«¸Ã×Ö·ûÓëµ¥Á´±ítÖеÄ×Ö·ûÒÀ´Î±È½Ï£»

£¨2£©µ±tÖÐÓÐÓë´ÓsÖÐÈ¡³öµÄÕâ¸ö×Ö·ûÏàµÈµÄ×Ö·û£¬Ôò´ÓtÖÐÈ¡ÏÂÒ»¸ö×Ö·ûÖØ¸´ÒÔÉϱȽϣ»£¨3£©µ±tÖÐûÓÐÓë´ÓsÖÐÈ¡³öµÄÕâ¸ö×Ö·ûÏàµÈµÄ×Ö·û£¬ÔòËã·¨½áÊø¡£

Éèµ¥Á´±íÀàÐÍΪLinkList£»×¢Ò⣬´ËʱÀàÐÍ LinkListÖеÄdata³É·ÖΪ×Ö·ûÀàÐÍ¡£ LinkString find(s,t) LinkString *s, *t; { LinkString *ps, *pt; ps=s;

while(ps!=NULL) { pt=t;

while((pt!=NULL)&&(ps->data!=pt->data)) pt=pt->next; if(pt= =NULL)

ps=NULL;

-15-

else

{ ps=ps->next;

s=ps;

}

} return s;

} //find

ϰÌâ4

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. Éè¶þάÊý×éA[0?m-1][0?n-1]°´ÐÐÓÅÏÈ˳Ðò´æ´¢ÔÚÄÚ´æÖУ¬µÚÒ»¸öÔªËØµÄµØÖ·Îªp£¬Ã¿¸öÔªËØÕ¼k¸ö×Ö½Ú£¬ÔòÔªËØaijµÄµØÖ·Îª£¨ £©¡£

A.p +[i*n+j-1]*k

B.p+[(i-1)*n+j-1]*k D.p+[j*n+i-1]*k

C.524

D.518

C.p+[(j-1)*n+i-1]*k A.520

B.522

2. ÒÑÖª¶þάÊý×éA10¡Á10ÖУ¬ÔªËØa20µÄµØÖ·Îª560£¬Ã¿¸öÔªËØÕ¼4¸ö×Ö½Ú£¬ÔòÔªËØa10µÄµØÖ·Îª£¨ £©¡£ 3. ÈôÊý×éA[0?m][0?n]°´ÁÐÓÅÏÈ˳Ðò´æ´¢£¬ÔòaijµØÖ·Îª£¨ £©¡£ A.LOC(a00)+[j*m+i] C.LOC(a00)+[(j-1)*n+i-1] £¨Éèÿ¸öÔªËØÕ¼d¸ö×Ö½Ú£©

B. LOC(a00)+[j*n+i] D. LOC(a00)+[(j-1)*m+i-1]

4. ÈôÏÂÈý½Ç¾ØÕóAn¡Án£¬°´ÁÐ˳ÐòѹËõ´æ´¢ÔÚÊý×éSa[0?(n+1)n/2]ÖУ¬Ôò·ÇÁãÔªËØaijµÄµØÖ·Îª£¨ £©¡£

(j?2)(j?1)+i-1]*d

2(j?2)(j?1)B. [(j-1)*n-+i]*d

2(j?2)(j?1)C£®[(j-1)*n-+i+1]*d

2(j?2)(j?1)D£®[(j-1)*n-+i-2]*d

2A. [(j-1)*n-5. ÉèÓйãÒå±íD=(a,b,D)£¬Æä³¤¶ÈΪ£¨ £©£¬Éî¶ÈΪ£¨ £©¡£ A.ÎÞÇî´ó A.a A.x

B.3

C.2 C.¿Õ±í

D.5 D.(a)

6. ¹ãÒå±íA=£¨a£©£¬Ôò±íβΪ£¨ £©¡£

B.(( ))

7. ¹ãÒå±íA=((x,(a,B)),(x,(a,B),y))£¬ÔòÔËËãhead(head(tail(A)))µÄ½á¹ûΪ£¨ £©¡£

B.(a,B) C.(x,(a,B)) D.A

B.A=(s,(a,B))

D.D=((a,B),(c,(a,B),D)

8. ÏÂÁйãÒå±íÓÃͼÀ´±íʾʱ£¬·ÖÖ§½áµã×î¶àµÄÊÇ£¨ £©¡£ A.L=((x,(a,B)),(x,(a,B),y)) C.B=((x,(a,B),y))

-16-

9. ͨ³£¶ÔÊý×é½øÐеÄÁ½ÖÖ»ù±¾²Ù×÷ÊÇ£¨ £©¡£ A.½¨Á¢Óëɾ³ý

B.Ë÷ÒýºÍÐÞ¸Ä D.²éÕÒÓëË÷Òý

C.²éÕÒºÍÐÞ¸Ä

10. ¼Ù¶¨ÔÚÊý×éAÖУ¬Ã¿¸öÔªËØµÄ³¤¶ÈΪ3¸ö×Ö½Ú£¬ÐÐϱêi´Ó1µ½8£¬ÁÐϱêj´Ó1µ½10£¬´ÓÊ×µØÖ·SA¿ªÊ¼Á¬Ðø´æ·ÅÔÚ´æ´¢Æ÷ÄÚ£¬´æ·Å¸ÃÊý×éÖÁÉÙÐèÒªµÄµ¥ÔªÊýΪ£¨ £©¡£

A.80

B.100

C.240

D.270

11. Êý×éAÖУ¬Ã¿¸öÔªËØµÄ³¤¶ÈΪ3¸ö×Ö½Ú£¬ÐÐϱêi´Ó1µ½8£¬ÁÐϱêj´Ó1µ½10£¬´ÓÊ×µØÖ·SA¿ªÊ¼Á¬Ðø´æ·ÅÔÚ´æ´¢Æ÷ÄÚ£¬¸ÃÊý×é°´Ðдæ·Åʱ£¬ÔªËØA[8][5]µÄÆðʼµØÖ·Îª£¨ £©¡£

A.SA+141

B.SA+144

C.SA+222

D.SA+225

12. Ï¡Êè¾ØÕóÒ»°ãµÄѹËõ´æ´¢·½·¨ÓÐÁ½ÖÖ£¬¼´£¨ £©¡£ A.¶þάÊý×éºÍÈýάÊý×é C.ÈýÔª×éºÍÊ®×ÖÁ´±í ¾ØÕóµÄתÖÃÔËË㣬ÕâÖֹ۵㣨 £©¡£

A.ÕýÈ· A.¹ãÒå±í A.¹ãÒå±í

B.²»ÕýÈ·

C.¿Õ±í

D.ÔªËØ»ò¹ãÒå±í D.ÔªËØ»ò¹ãÒå±í

14. Ò»¸ö¹ãÒå±íµÄ±íÍ·×ÜÊÇÒ»¸ö£¨ £©¡£

B.ÔªËØ B.ÔªËØ

15. Ò»¸ö¹ãÒå±íµÄ±íβ×ÜÊÇÒ»¸ö£¨ £©¡£

C.¿Õ±í

16. Êý×é¾ÍÊǾØÕ󣬾ØÕó¾ÍÊÇÊý×飬ÕâÖÖ˵·¨£¨ £©¡£ A.ÕýÈ· C.ǰ¾ä¶Ô£¬ºó¾ä´í ¶þ¡¢Ìî¿ÕÌâ

1. һάÊý×éµÄÂß¼­½á¹¹ÊÇ______________£¬´æ´¢½á¹¹ÊÇ______________£»¶ÔÓÚ¶þά»ò¶àάÊý×飬·ÖΪ______________ºÍ______________Á½ÖÖ²»Í¬µÄ´æ´¢·½Ê½¡£

2. ¶ÔÓÚÒ»¸ö¶þάÊý×éA[m][n]£¬Èô°´ÐÐÐòΪÖ÷Ðò´æ´¢£¬ÔòÈÎÒ»ÔªËØA[i][j]Ïà¶ÔÓÚA[0][0]µÄµØÖ·Îª______________¡£

3. Ò»¸ö¹ãÒå±íΪ(a,(a,b),d,e,((i,j),k))£¬Ôò¸Ã¹ãÒå±íµÄ³¤¶ÈΪ_____£¬Éî¶ÈΪ_____¡£ 4. Ò»¸öÏ¡Êè¾ØÕóΪ ? 0 0 2 £¬Ôò¶ÔÓ¦µÄÈýÔª×éÏßÐÔ±íΪ_____________¡£ 0?

B.´íÎó

D.ºó¾ä¶Ô B.ÈýÔª×éºÍÉ¢ÁÐ D.É¢ÁкÍÊ®×ÖÁ´±í

13. Èô²ÉÓÃÈýÔª×éѹËõ¼¼Êõ´æ´¢Ï¡Êè¾ØÕó£¬Ö»Òª°Ñÿ¸öÔªËØµÄÐÐϱêºÍÁÐϱ껥»»£¬¾ÍÍê³ÉÁ˶ԸÃ

?3000????00?15???0000??5. Ò»¸ön¡ÁnµÄ¶Ô³Æ¾ØÕó£¬Èç¹ûÒÔÐÐΪÖ÷Ðò»òÒÔÁÐΪÖ÷Ðò´æÈëÄڴ棬ÔòÆäÈÝÁ¿Îª______________¡£ 6. ÒÑÖª¹ãÒå±íA=((a,b,c),(d,e,f))£¬ÔòÔËËãhead(tail(tail(A)))=____________¡£

7. ÉèÓÐÒ»¸ö10½×µÄ¶Ô³Æ¾ØÕóA£¬²ÉÓÃѹËõ´æ´¢·½Ê½ÒÔÐÐÐòΪÖ÷Ðò´æ´¢£¬a00ΪµÚÒ»¸öÔªËØ£¬Æä´æ´¢µØÖ·Îª0£¬Ã¿¸öÔªËØÕ¼ÓÐ1¸ö´æ´¢µØÖ·¿Õ¼ä£¬Ôòa85µÄµØÖ·Îª______________¡£

8. ÒÑÖª¹ãÒå±íLs=(a,(b,c,d),e)£¬ÔËÓÃheadºÍtailº¯ÊýÈ¡³öLsÖеÄÔ­×ÓbµÄÔËËãÊÇ______________¡£ 9. ÈýάÊý×éR[c1?d1,c2?d2,c3?d3]¹²º¬ÓÐ______________¸öÔªËØ¡££¨ÆäÖУºc1¡Üd1,c2¡Üd2,c3¡Üd3£©

-17-

10. Êý×éA[1?10£¬-2?6£¬2?8]ÒÔÐÐÓÅÏȵÄ˳Ðò´æ´¢£¬ÉèµÚÒ»¸öÔªËØµÄÊ×µØÖ·ÊÇ100£¬Ã¿¸öÔªËØÕ¼3¸ö´æ´¢³¤¶ÈµÄ´æ´¢¿Õ¼ä£¬ÔòÔªËØA[5£¬0£¬7]µÄ´æ´¢µØÖ·Îª______________¡£ Èý¡¢ÅжÏÌâ

1. Êý×é¿É¿´×÷»ù±¾ÏßÐÔ±íµÄÒ»ÖÖÍÆ¹ã£¬Òò´ËÓëÏßÐÔ±íÒ»Ñù£¬¿ÉÒÔ¶ÔËü½øÐвåÈ롢ɾ³ýµÈ²Ù×÷¡££¨ £© 2. ¶àάÊý×é¿ÉÒÔ¿´×÷Êý¾ÝÔªËØÒ²ÊÇ»ù±¾ÏßÐÔ±íµÄ»ù±¾ÏßÐÔ±í¡££¨ £© 3. ÒÔÐÐΪÖ÷Ðò»òÒÔÁÐΪÖ÷Ðò¶ÔÓÚ¶àάÊý×éµÄ´æ´¢Ã»ÓÐÓ°Ïì¡££¨ £© 4. ¶ÔÓÚ²»Í¬µÄÌØÊâ¾ØÕóÓ¦¸Ã²ÉÓò»Í¬µÄ´æ´¢·½Ê½¡££¨ £©

5. ²ÉÓÃѹËõ´æ´¢Ö®ºó£¬ÏÂÈý½Ç¾ØÕóµÄ´æ´¢¿Õ¼ä¿ÉÒÔ½ÚÔ¼Ò»°ë¡££¨ £©

6. ÔÚÒ»°ãÇé¿öÏ£¬²ÉÓÃѹËõ´æ´¢Ö®ºó£¬¶Ô³Æ¾ØÕóÊÇËùÓÐÌØÊâ¾ØÕóÖд洢¿Õ¼ä½ÚÔ¼×î¶àµÄ¡££¨ £© 7. ¾ØÕó²»½öÊDZíʾ¶àάÊý×飬¶øÇÒÊDZíʾͼµÄÖØÒª¹¤¾ß¡££¨ £© 8. ¾àÕóÖеÄÊý¾ÝÔªËØ¿ÉÒÔÊDz»Í¬µÄÊý¾ÝÀàÐÍ¡££¨ £© 9. ¾ØÕóÖеÄÐÐÁÐÊýÍùÍùÊDz»ÏàµÈµÄ¡££¨ £©

10. ¹ãÒå±íµÄ±íÍ·¿ÉÒÔÊǹãÒå±í£¬Ò²¿ÉÒÔÊǵ¥¸öÔªËØ¡££¨ £© 11. ¹ãÒå±íµÄ±íβһ¶¨ÊÇÒ»¸ö¹ãÒå±í¡££¨ £©

12. ¹ãÒå±íµÄÔªËØ¿ÉÒÔÊÇ×Ó±í£¬Ò²¿ÉÒÔÊǵ¥ÔªËØ¡££¨ £© 13. ¹ãÒå±í²»Äܵݹ鶨Òå¡££¨ £©

14. ¹ãÒå±íʵ¼ÊÉÏÊÇ»ù±¾ÏßÐÔ±íµÄÍÆ¹ã¡££¨ £© 15. ¹ãÒå±íµÄ×é³ÉÔªËØ¿ÉÒÔÊDz»Í¬ÐÎʽµÄÔªËØ¡££¨ £©

ϰÌâ4²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. A 2. A 3. A 4. B 5. BA 6. C 7. A 8. A 9. C 10. C 11. C 12. C 13. B 14. D 15.A 16.B ¶þ¡¢Ìî¿ÕÌâ

1. ÏßÐԽṹ£¬Ë³Ðò½á¹¹£¬ÒÔÐÐΪÖ÷Ðò£¬ÒÔÁÐΪÖ÷Ðò 2. i¡Án+j¸öÔªËØÎ»Öà 3. 5£¬3

4.£¨£¨0£¬2£¬2£©£¬£¨1£¬0£¬3£©£¬£¨2£¬2£¬-1£©£¬£¨2£¬3£¬5£©£© 5. n¡Á(n+1)/2 6. e 7. 41

8. head(head(tail(Ls)))

9.£¨d1-c1+1£©¡Á£¨d2-c2+1£©¡Á£¨d3-c3+1£© 10. 913 Èý¡¢ÅжÏÌâ

1.¡Á 2.¡Ì 3.¡Ì 4.¡Ì 5.¡Á 6.¡Á 7.¡Ì 8.¡Á 9.¡Á 10.¡Ì 11.¡Ì 12.¡Ì 13.¡Á 14.¡Ì 15.¡Ì

-18-

ϰÌâ5

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. ÔÚÒ»¿Ã¶ÈΪ3µÄÊ÷ÖУ¬¶ÈΪ3µÄ½áµãÊýΪ2¸ö£¬¶ÈΪ2µÄ½áµãÊýΪ1¸ö£¬¶ÈΪ1µÄ½áµãÊýΪ2¸ö£¬Ôò¶ÈΪ0µÄ½áµãÊýΪ£¨ £©¸ö¡£

A. 4

B. 5 B. 16 B. 4 B. 4

C. 6

D. 7

D. 47

2. ¼ÙÉèÔÚÒ»¿Ã¶þ²æÊ÷ÖУ¬Ë«·ÖÖ§½áµãÊýΪ15£¬µ¥·ÖÖ§½áµãÊýΪ30¸ö£¬ÔòÒ¶×Ó½áµãÊýΪ£¨ £©¸ö¡£ A. 15 A. 3 A. 2

C. 17

3. ¼Ù¶¨Ò»¿ÃÈý²æÊ÷µÄ½áµãÊýΪ50£¬ÔòËüµÄ×îС¸ß¶ÈΪ£¨ £©¡£

C. 5

D. 6

D. 8

4. ÔÚÒ»¿Ã¶þ²æÊ÷ÉϵÚ4²ãµÄ½áµãÊý×î¶àΪ£¨ £©¡£

C. 6

5. ÓÃ˳Ðò´æ´¢µÄ·½·¨½«ÍêÈ«¶þ²æÊ÷ÖеÄËùÓнáµãÖð²ã´æ·ÅÔÚÊý×éÖÐR[1..n]£¬½áµãR[i]ÈôÓÐ×óº¢×Ó£¬Æä×óº¢×ӵıàºÅΪ½áµã£¨ £©¡£

A. R[2i+1] B. R[2i] A. 24 A. Âß¼­

B. 48

C. R[i/2]

D. R[2i-1]

D. 53

6. ÓÉȨֵ·Ö±ðΪ3,8,6,2,5µÄÒ¶×Ó½áµãÉú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬ËüµÄ´øÈ¨Â·¾¶³¤¶ÈΪ£¨ £©¡£

C. 72

7. ÏßË÷¶þ²æÊ÷ÊÇÒ»ÖÖ£¨ £©½á¹¹¡£

B. Âß¼­ºÍ´æ´¢ C. ÎïÀí

D. ÏßÐÔ

8. ÏßË÷¶þ²æÊ÷ÖУ¬½áµãpûÓÐ×ó×ÓÊ÷µÄ³äÒªÌõ¼þÊÇ£¨ £©¡£ A. p->lc=NULL B. p->ltag=1 C. p->ltag=1 ÇÒp->lc=NULL

D. ÒÔÉ϶¼²»¶Ô

9. Éèn , m Ϊһ¿Ã¶þ²æÊ÷ÉϵÄÁ½¸ö½áµã£¬ÔÚÖÐÐò±éÀúÐòÁÐÖÐnÔÚmǰµÄÌõ¼þÊÇ£¨ £©¡£ A. nÔÚmÓÒ·½ B. nÔÚm ×ó·½ C. nÊÇmµÄ׿ÏÈ D. nÊÇmµÄ×ÓËï

10. Èç¹ûFÊÇÓÉÓÐÐòÊ÷Tת»»¶øÀ´µÄ¶þ²æÊ÷£¬ÄÇôTÖнáµãµÄǰÐò¾ÍÊÇFÖнáµãµÄ£¨ £©¡£ A. ÖÐÐò ¹¹¡£

A. Èý²æÁ´±í B. ¹ãÒå±í 12. ÏÂÃæÐðÊöÕýÈ·µÄÊÇ£¨ £©¡£ A. ¶þ²æÊ÷ÊÇÌØÊâµÄÊ÷ B. ¶þ²æÊ÷µÈ¼ÛÓÚ¶ÈΪ2µÄÊ÷ C. ÍêÈ«¶þ²æÊ÷±ØÎªÂú¶þ²æÊ÷ D. ¶þ²æÊ÷µÄ×óÓÒ×ÓÊ÷ÓдÎÐòÖ®·Ö

13. ÈκÎÒ»¿Ã¶þ²æÊ÷µÄÒ¶×Ó½áµãÔÚÏÈÐò¡¢ÖÐÐòºÍºóÐò±éÀúÐòÁÐÖеÄÏà¶Ô´ÎÐò£¨ £©¡£ A. ²»·¢Éú¸Ä±ä B. ·¢Éú¸Ä±ä C. ²»ÄÜÈ·¶¨ D. ÒÔÉ϶¼²»¶Ô

C. ¶þ²æÁ´±í

D. ˳Ðò

B. ǰÐò

C. ºóÐò

D. ²ã´ÎÐò

11. ÓûʵÏÖÈÎÒâ¶þ²æÊ÷µÄºóÐò±éÀúµÄ·ÇµÝ¹éËã·¨¶ø²»±ØÊ¹ÓÃÕ»£¬×î¼Ñ·½°¸ÊǶþ²æÊ÷²ÉÓ㨠£©´æ´¢½á

-19-

14. ÒÑÖªÒ»¿ÃÍêÈ«¶þ²æÊ÷µÄ½áµã×ÜÊýΪ9¸ö£¬Ôò×îºóÒ»²ãµÄ½áµãÊýΪ£¨ £©¡£ A. 1

B. 2

C. 3

D. 4

15. ¸ù¾ÝÏÈÐòÐòÁÐABDCºÍÖÐÐòÐòÁÐDBACÈ·¶¨¶ÔÓ¦µÄ¶þ²æÊ÷£¬¸Ã¶þ²æÊ÷£¨ £©¡£

A. ÊÇÍêÈ«¶þ²æÊ÷ C. ÊÇÂú¶þ²æÊ÷

¶þ¡¢ÅжÏÌâ

1. ¶þ²æÊ÷ÖÐÿ¸ö½áµãµÄ¶È²»Äܳ¬¹ý2£¬ËùÒÔ¶þ²æÊ÷ÊÇÒ»ÖÖÌØÊâµÄÊ÷¡£ 2. ¶þ²æÊ÷µÄǰÐò±éÀúÖУ¬ÈÎÒâ½áµã¾ù´¦ÔÚÆä×ÓÅ®½áµã֮ǰ¡£ 3. ÏßË÷¶þ²æÊ÷ÊÇÒ»ÖÖÂß¼­½á¹¹¡£

4. ¹þ·òÂüÊ÷µÄ×ܽáµã¸öÊý£¨¶àÓÚ1ʱ£©²»ÄÜΪżÊý¡£

£¨ £© £¨ £©

£¨ £© £¨ £© £¨ £© £¨ £©

£¨ £© £¨ £© £¨ £© £¨ £©

B. ²»ÊÇÍêÈ«¶þ²æÊ÷

D. ²»ÊÇÂú¶þ²æÊ÷

5. Óɶþ²æÊ÷µÄÏÈÐòÐòÁкͺóÐòÐòÁпÉÒÔΨһȷ¶¨Ò»¿Å¶þ²æÊ÷¡£ 6. Ê÷µÄºóÐò±éÀúÓëÆä¶ÔÓ¦µÄ¶þ²æÊ÷µÄºóÐò±éÀúÐòÁÐÏàͬ¡£ 7. ¸ù¾ÝÈÎÒâÒ»ÖÖ±éÀúÐòÁм´¿ÉΨһȷ¶¨¶ÔÓ¦µÄ¶þ²æÊ÷¡£ 8. Âú¶þ²æÊ÷Ò²ÊÇÍêÈ«¶þ²æÊ÷¡£ 10. Ê÷µÄ×ÓÊ÷ÊÇÎÞÐòµÄ¡£ Èý¡¢Ìî¿ÕÌâ

9. ¹þ·òÂüÊ÷Ò»¶¨ÊÇÍêÈ«¶þ²æÊ÷¡£

1. ¼Ù¶¨Ò»¿ÃÊ÷µÄ¹ãÒå±í±íʾΪA£¨B£¨E£©£¬C£¨F£¨H£¬I£¬J£©£¬G£©£¬D£©£¬Ôò¸ÃÊ÷µÄ¶ÈΪ_____£¬Ê÷µÄÉî¶ÈΪ_____£¬Öն˽áµãµÄ¸öÊýΪ______£¬µ¥·ÖÖ§½áµãµÄ¸öÊýΪ______£¬Ë«·ÖÖ§½áµãµÄ¸öÊýΪ______£¬Èý·ÖÖ§½áµãµÄ¸öÊýΪ_______£¬C½áµãµÄË«Ç×½áµãΪ_______£¬Æäº¢×Ó½áµãΪ_______ºÍ_______½áµã¡£

2. ÉèFÊÇÒ»¸öÉ­ÁÖ£¬BÊÇÓÉFת»»µÃµ½µÄ¶þ²æÊ÷£¬FÖÐÓÐn¸ö·ÇÖն˽áµã£¬ÔòBÖÐÓÒÖ¸ÕëÓòΪ¿ÕµÄ½áµãÓÐ_______¸ö¡£

3. ¶ÔÓÚÒ»¸öÓÐn¸ö½áµãµÄ¶þ²æÊ÷£¬µ±ËüΪһ¿Ã________¶þ²æÊ÷ʱ¾ßÓÐ×îС¸ß¶È£¬¼´Îª_______£¬µ±ËüΪһ¿Ãµ¥Ö§Ê÷¾ßÓÐ_______¸ß¶È£¬¼´Îª_______¡£

4. ÓÉ´øÈ¨Îª3£¬9£¬6£¬2£¬5µÄ5¸öÒ¶×Ó½áµã¹¹³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬Ôò´øÈ¨Â·¾¶³¤¶ÈΪ___¡£ 5. ÔÚÒ»¿Ã¶þ²æÅÅÐòÊ÷Éϰ´_______±éÀúµÃµ½µÄ½áµãÐòÁÐÊÇÒ»¸öÓÐÐòÐòÁС£

6. ¶ÔÓÚÒ»¿Ã¾ßÓÐn¸ö½áµãµÄ¶þ²æÊ÷£¬µ±½øÐÐÁ´½Ó´æ´¢Ê±£¬Æä¶þ²æÁ´±íÖеÄÖ¸ÕëÓòµÄ×ÜÊýΪ_______¸ö£¬ÆäÖÐ_______¸öÓÃÓÚÁ´½Óº¢×Ó½áµã£¬_______¸ö¿ÕÏÐ×Å¡£

7. ÔÚÒ»¿Ã¶þ²æÊ÷ÖУ¬¶ÈΪ0µÄ½áµã¸öÊýΪn0£¬¶ÈΪ2µÄ½áµã¸öÊýΪn2£¬Ôòn0=______¡£

8. Ò»¿ÃÉî¶ÈΪkµÄÂú¶þ²æÊ÷µÄ½áµã×ÜÊýΪ_______£¬Ò»¿ÃÉî¶ÈΪkµÄÍêÈ«¶þ²æÊ÷µÄ½áµã×ÜÊýµÄ×îСֵΪ_____£¬×î´óֵΪ______¡£

9. ÓÉÈý¸ö½áµã¹¹³ÉµÄ¶þ²æÊ÷£¬¹²ÓÐ____ÖÖ²»Í¬µÄÐÎ̬¡£

10. Éè¸ß¶ÈΪhµÄ¶þ²æÊ÷ÖÐÖ»ÓжÈΪ0ºÍ¶ÈΪ2µÄ½áµã£¬Ôò´ËÀà¶þ²æÊ÷ÖÐËù°üº¬µÄ½áµãÊýÖÁÉÙΪ____¡£ 11. Ò»¿Ãº¬ÓÐn¸ö½áµãµÄk²æÊ÷£¬______ÐÎ̬´ïµ½×î´óÉî¶È£¬____ÐÎ̬´ïµ½×îСÉî¶È¡£

12. ¶ÔÓÚÒ»¿Ã¾ßÓÐn¸ö½áµãµÄ¶þ²æÊ÷£¬ÈôÒ»¸ö½áµãµÄ±àºÅΪi(1¡Üi¡Ün)£¬ÔòËüµÄ×óº¢×Ó½áµãµÄ±àºÅΪ________£¬ÓÒº¢×Ó½áµãµÄ±àºÅΪ________£¬Ë«Ç×½áµãµÄ±àºÅΪ________¡£

13. ¶ÔÓÚÒ»¿Ã¾ßÓÐn¸ö½áµãµÄ¶þ²æÊ÷£¬²ÉÓöþ²æÁ´±í´æ´¢Ê±£¬Á´±íÖÐÖ¸ÕëÓòµÄ×ÜÊýΪ_________¸ö£¬

-20-

ÆäÖÐ___________¸öÓÃÓÚÁ´½Óº¢×Ó½áµã£¬_____________¸ö¿ÕÏÐ×Å¡£

14. ¹þ·òÂüÊ÷ÊÇÖ¸________________________________________________µÄ¶þ²æÊ÷¡£ 15. ¿ÕÊ÷ÊÇÖ¸________________________£¬×îСµÄÊ÷ÊÇÖ¸_______________________¡£ 16. ¶þ²æÊ÷µÄÁ´Ê½´æ´¢½á¹¹ÓÐ______________ºÍ_______________Á½ÖÖ¡£ 17. Èý²æÁ´±í±È¶þ²æÁ´±í¶àÒ»¸öÖ¸Ïò______________µÄÖ¸ÕëÓò¡£ 18. ÏßË÷ÊÇÖ¸___________________________________________¡£

19. ÏßË÷Á´±íÖеÄrtagÓòֵΪ_____ʱ£¬±íʾ¸Ã½áµãÎÞÓÒº¢×Ó£¬´Ëʱ______ÓòΪָÏò¸Ã½áµãºó¼ÌÏßË÷µÄÖ¸Õë¡£

20. ±¾½ÚÖÐÎÒÃÇѧϰµÄÊ÷µÄ´æ´¢½á¹¹ÓÐ_____________¡¢___________ºÍ___________¡£ ËÄ¡¢Ó¦ÓÃÌâ

1. ÒÑÖªÒ»¿ÃÊ÷±ßµÄ¼¯ºÏΪ{£¬£¬£¬£¬£¬£¬£¬£¬£¬£¬£¬£¬}£¬Çë»­³öÕâ¿ÃÊ÷£¬²¢»Ø´ðÏÂÁÐÎÊÌ⣺

£¨1£©ÄĸöÊǸù½áµã£¿ £¨2£©ÄÄЩÊÇÒ¶×Ó½áµã£¿ £¨3£©ÄĸöÊǽáµãgµÄË«Ç×£¿ £¨4£©ÄÄЩÊǽáµãgµÄ׿ÏÈ£¿ £¨5£©ÄÄЩÊǽáµãgµÄº¢×Ó£¿ £¨6£©ÄÄЩÊǽáµãeµÄº¢×Ó£¿

£¨7£©ÄÄЩÊǽáµãeµÄÐֵܣ¿ÄÄЩÊǽáµãfµÄÐֵܣ¿ £¨8£©½áµãbºÍnµÄ²ã´ÎºÅ·Ö±ðÊÇʲô£¿ £¨9£©Ê÷µÄÉî¶ÈÊǶàÉÙ£¿

£¨10£©ÒÔ½áµãcΪ¸ùµÄ×ÓÊ÷Éî¶ÈÊǶàÉÙ£¿ 2. Ò»¿Ã¶ÈΪ2µÄÊ÷ÓëÒ»¿Ã¶þ²æÊ÷ÓкÎÇø±ð¡£

3. ÊԷֱ𻭳ö¾ßÓÐ3¸ö½áµãµÄÊ÷ºÍ¶þ²æÊ÷µÄËùÓв»Í¬ÐÎ̬£¿

4. ÒÑÖªÓÃһάÊý×é´æ·ÅµÄÒ»¿ÃÍêÈ«¶þ²æÊ÷£ºABCDEFGHIJKL£¬Ð´³ö¸Ã¶þ²æÊ÷µÄÏÈÐò¡¢ÖÐÐòºÍºóÐò±éÀúÐòÁС£

5. Ò»¿ÃÉî¶ÈΪHµÄÂúk²æÊ÷ÓÐÈçÏÂÐÔÖÊ£ºµÚH²ãÉϵĽáµã¶¼ÊÇÒ¶×Ó½áµã£¬ÆäÓà¸÷²ãÉÏÿ¸ö½áµã¶¼ÓÐk¿Ã·Ç¿Õ×ÓÊ÷£¬Èç¹û°´²ã´Î×ÔÉÏÖÁÏ£¬´Ó×óµ½ÓÒ˳Ðò´Ó1¿ªÊ¼¶ÔÈ«²¿½áµã±àºÅ£¬»Ø´ðÏÂÁÐÎÊÌ⣺

£¨1£©¸÷²ãµÄ½áµãÊýÄ¿ÊǶàÉÙ£¿

£¨2£©±àºÅΪnµÄ½áµãµÄ¸¸½áµãÈç¹û´æÔÚ£¬±àºÅÊǶàÉÙ£¿ £¨3£©±àºÅΪnµÄ½áµãµÄµÚi¸öº¢×Ó½áµãÈç¹û´æÔÚ£¬±àºÅÊǶàÉÙ£¿ £¨4£©±àºÅΪnµÄ½áµãÓÐÓÒÐֵܵÄÌõ¼þÊÇʲô£¿ÆäÓÒÐֵܵıàºÅÊǶàÉÙ£¿ 6. ÕÒ³öËùÓÐÂú×ãÏÂÁÐÌõ¼þµÄ¶þ²æÊ÷£º

£¨1£©ËüÃÇÔÚÏÈÐò±éÀúºÍÖÐÐò±éÀúʱ£¬µÃµ½µÄ±éÀúÐòÁÐÏàͬ£» £¨2£©ËüÃÇÔÚºóÐò±éÀúºÍÖÐÐò±éÀúʱ£¬µÃµ½µÄ±éÀúÐòÁÐÏàͬ£» £¨3£©ËüÃÇÔÚÏÈÐò±éÀúºÍºóÐò±éÀúʱ£¬µÃµ½µÄ±éÀúÐòÁÐÏàͬ£»

7. ¼ÙÉèÒ»¿Ã¶þ²æÊ÷µÄÏÈÐòÐòÁÐΪEBADCFHGIKJ£¬ÖÐÐòÐòÁÐΪABCDEFGHIJK£¬Çëд³ö¸Ã¶þ²æÊ÷µÄºóÐò±éÀúÐòÁС£

-21-

8. ¼ÙÉèÒ»¿Ã¶þ²æÊ÷µÄºóÐòÐòÁÐΪDCEGBFHKJIA£¬ÖÐÐòÐòÁÐΪDCBGEAHFIJK£¬Çëд³ö¸Ã¶þ²æÊ÷µÄºóÐò±éÀúÐòÁС£

9. ¸ø³öÈçͼ5-14ËùʾµÄÉ­ÁÖµÄÏȸù¡¢ºó¸ù±éÀú½áµãÐòÁУ¬È»ºó»­³ö¸ÃÉ­ÁÖ¶ÔÓ¦µÄ¶þ²æÊ÷¡£ 10£®¸ø¶¨Ò»×éȨֵ£¨5£¬9£¬11£¬2£¬7£¬16£©£¬ÊÔÉè¼ÆÏàÓ¦µÄ¹þ·òÂüÊ÷¡£

Îå¡¢Ëã·¨Éè¼ÆÌâ

1. Ò»¿Ã¾ßÓÐn¸ö½áµãµÄÍêÈ«¶þ²æÊ÷ÒÔһάÊý×é×÷Ϊ´æ´¢½á¹¹£¬ÊÔÉè¼ÆÒ»¸ö¶Ô¸ÃÍêÈ«¶þ²æÊ÷½øÐÐÏÈÐò±éÀúµÄËã·¨¡£

2. ¸ø¶¨Ò»¿ÃÓöþ²æÁ´±í±íʾµÄ¶þ²æÊ÷£¬ÆäÖеÄÖ¸ÕëtÖ¸Ïò¸ù½áµã£¬ÊÔд³ö´Ó¸ù¿ªÊ¼£¬°´²ã´Î±éÀú¶þ²æÊ÷µÄËã·¨£¬Í¬²ãµÄ½áµã°´´Ó×óÖÁÓҵĴÎÐò·ÃÎÊ¡£

3. д³öÔÚÖÐÐòÏßË÷¶þ²æÊ÷ÖнáµãPµÄÓÒ×ÓÊ÷ÖвåÈëÒ»¸ö½áµãsµÄËã·¨¡£

4. ¸ø¶¨Ò»¿Ã¶þ²æÊ÷£¬Óöþ²æÁ´±í±íʾ£¬Æä¸ùÖ¸ÕëΪt£¬ÊÔд³öÇó¸Ã¶þ²æÊ÷ÖнáµãnµÄË«Ç×½áµãµÄËã·¨¡£ÈôûÓнáµãn»òÕ߸ýáµãûÓÐË«Ç×½áµã£¬·Ö±ðÊä³öÏàÓ¦µÄÐÅÏ¢£»Èô½áµãnÓÐË«Ç×£¬Êä³öÆäË«Ç×µÄÖµ¡£

ϰÌâ5²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. C 2. B 3. C 4. D 5. B 6. D 7. C 8. B 9. B 10. B 11. A 12. D 13. A 14. B 15. A ¶þ¡¢ÅжÏÌâ

1.¡Á 2.¡Ì 3.¡Á 4.¡Ì 5.¡Á 6.¡Ì 7.¡Ì 8.¡Ì 9.¡Á 10.¡Á Èý¡¢Ìî¿ÕÌâ

1. 3£¬4£¬6£¬1£¬1£¬2£¬A£¬F£¬G 2. n+1

3. ÍêÈ«£¬??log2(n?1)??£¬×î´ó£¬n 4. 55 5. ÖÐÐò 6. 2n£¬n-1£¬n+1 7. n2+1

8. 2k-1£¬2k-1£¬2k-1 9. 5 10. 2h-1

A B

D C E

F

H

G

I J

ͼ5-14

K L M N

O

-22-

11. µ¥Ö§Ê÷£¬ÍêÈ«¶þ²æÊ÷ 12. 2i£¬2i+1£¬i/2£¨»ò?i/2?£© 13. 2n£¬n-1£¬n+1 14. ´øÈ¨Â·¾¶³¤¶È×îС

15. ½áµãÊýΪ0£¬Ö»ÓÐÒ»¸ö¸ù½áµãµÄÊ÷ 16. ¶þ²æÁ´±í£¬Èý²æÁ´±í 17. Ë«Ç×½áµã

18. Ö¸Ïò½áµãǰÇýºÍºó¼ÌÐÅÏ¢µÄÖ¸Õë 19. 1£¬RChild

20. º¢×Ó±íʾ·¨£¬Ë«Ç×±íʾ·¨£¬³¤×ÓÐֵܱíʾ·¨ ËÄ¡¢Ó¦ÓÃÌâ 1. ½â´ð£º ¸ù¾Ý¸ø¶¨µÄ±ßÈ·¶¨µÄÊ÷Èçͼ5-15Ëùʾ¡£ ÆäÖиù½áµãΪa£»

Ò¶×Ó½áµãÓУºd¡¢m¡¢n¡¢j¡¢k¡¢f¡¢l£» cÊǽáµãgµÄË«Ç×£» a¡¢cÊǽáµãgµÄ׿ÏÈ£» j¡¢kÊǽáµãgµÄº¢×Ó£» m¡¢nÊǽáµãeµÄ×ÓË eÊǽáµãdµÄÐֵܣ» g¡¢hÊǽáµãfµÄÐֵܣ»

½áµãbºÍnµÄ²ã´ÎºÅ·Ö±ðÊÇ2ºÍ5£» Ê÷µÄÉî¶ÈΪ5¡£ 2. ½â´ð£º ¶ÈΪ2µÄÊ÷ÓÐÁ½¸ö·ÖÖ§£¬µ«·Ö֧ûÓÐ×óÓÒÖ®·Ö£»Ò»¿Ã¶þ²æÊ÷Ò²ÓÐÁ½¸ö·ÖÖ§£¬µ«ÓÐ×óÓÒÖ®·Ö£¬×óÓÒ×ÓÊ÷²»Äܽ»»»¡£ 3. ½â´ð£º ÂÔ 4. ½â´ð£º

ÏÈÐòÐòÁУºABDHIEJKCFLG ÖÐÐòÐòÁУºHDIBJEKALFCG ºóÐòÐòÁУºHIDJKEBLFGCA 5. ½â´ð£º £¨1£©µÚi²ãÉϵĽáµãÊýÄ¿ÊÇmi-1¡£

£¨2£©±àºÅΪnµÄ½áµãµÄ¸¸½áµãÈç¹û´æÔÚ£¬±àºÅÊÇ((n-2)/m)+1¡£

£¨3£©±àºÅΪnµÄ½áµãµÄµÚi¸öº¢×Ó½áµãÈç¹û´æÔÚ£¬±àºÅÊÇ(n-1)*m+i+1¡£ £¨4£©±àºÅΪnµÄ½áµãÓÐÓÒÐֵܵÄÌõ¼þÊÇ(n-1)%m¡Ù0¡£ÆäÓÒÐֵܵıàºÅÊÇn+1¡£ 6. ½â´ð£º £¨1£©ÏÈÐòÐòÁкÍÖÐÐòÐòÁÐÏàͬµÄ¶þ²æÊ÷Ϊ£º¿ÕÊ÷»òÕßÈÎÒ»½áµã¾ùÎÞ×óº¢×ӵķǿնþ²æÊ÷£»

ͼ5-15

a b d

e i m n j g c f k h i

-23-

£¨2£©ÖÐÐòÐòÁкͺóÐòÐòÁÐÏàͬµÄ¶þ²æÊ÷Ϊ£º¿ÕÊ÷»òÕßÈÎÒ»½áµã¾ùÎÞÓÒº¢×ӵķǿնþ²æÊ÷£» £¨3£©ÏÈÐòÐòÁкͺóÐòÐòÁÐÏàͬµÄ¶þ²æÊ÷Ϊ£º¿ÕÊ÷»ò½öÓÐÒ»¸ö½áµãµÄ¶þ²æÊ÷¡£ 7. ½â´ð£ººóÐòÐòÁУºACDBGJKIHFE 8. ½â´ð£ºÏÈÐòÐòÁУºABCDGEIHFJK 9. ½â´ð£º Ïȸù±éÀú£ºABCDEFGHIJKLMNO ºó¸ù±éÀú£ºBDEFCAHJIGKNOML É­ÁÖת»»³É¶þ²æÊ÷Èçͼ5-16Ëùʾ¡£

10. ½â´ð£º¹¹Ôì¶ø³ÉµÄ¹þ·òÂüÊ÷Èçͼ5-17Ëùʾ¡£

Îå¡¢Ëã·¨Éè¼ÆÌâ

1. ½â´ð£ºÕâ¸öÎÊÌâ¿ÉÒÔÓõݹéËã·¨£¬Ò²¿ÉÓ÷ǵݹéËã·¨£¬ÏÂÃæ¸ø³öµÄΪ·ÇµÝ¹éËã·¨¡£¼ÙÉè¸ÃÍêÈ«¶þ²æÊ÷µÄ½áµãÒÔ²ã´ÎΪÐò£¬°´ÕÕ´ÓÉϵ½Ï£¬Í¬²ã´Ó×óµ½ÓÒ˳Ðò±àºÅ£¬´æ·ÅÔÚÒ»¸öһάÊý×éR[1..n]ÖУ¬ÇÒÓÃÒ»¸öÓÐ×ã¹»´óÈÝÁ¿ÎªmaxlenµÄ˳ÐòÕ»×÷¸¨Öú´æ´¢£¬Ëã·¨ÃèÊöÈçÏ£º preorder (R) //ÏÈÐò±éÀú¶þ²æÊ÷R int R[n]; { int root;

SqStack *s; //sΪһ¸öÖ¸ÕëÕ»£¬ÀàÐÍΪseqstack£¬ÆäÖаüº¬topÓòºÍÊý×édata s->top= -1; //sÕ»ÖÃ¿Õ root=1;

while ((root<=n) && (s->top>-1)) { while (root<=n) { printf(R[root]);

s->top++;

s->data[s->top]=root; root=2*root;

}

if (s->top>-1) //Õ»·Ç¿Õ·ÃÎÊ£¬±éÀúÓÒ×ÓÊ÷

ͼ5-16

A B C H D E F J I M N O 2 ͼ5-17

G K L 9 20 50 30 11 14 7 7 5 16 -24-

{ root=s->data[s->top]*2+1; s->top--;

} }

}

2. ½â´ð£º¿¼ÂÇÓÃÒ»¸ö˳Ðò¶ÓqueÀ´±£´æ±éÀú¹ý³ÌÖеĸ÷¸ö½áµã£¬ÓÉÓÚ¶þ²æÊ÷ÒÔ¶þ²æÁ´±í´æ´¢£¬ËùÒÔ¿ÉÉèqueΪһ¸öÖ¸ÏòÊý¾ÝÀàÐÍΪbitreeµÄÖ¸ÕëÊý×飬×î´óÈÝÁ¿Îªmaxnum£¬Ï±ê´Ó1¿ªÊ¼£¬Í¬²ã½áµã´Ó×óµ½ÓÒ´æ·Å¡£Ëã·¨ÖеÄfrontΪ¶ÓÍ·Ö¸Õ룬rearΪ¶ÓβָÕë¡£ levelorder (BiTree *t) //°´²ã´Î±éÀú¶þ²æÊ÷t { BiTree *que[maxnum];

int rear,front; if (t!=NULL)

{ front=0; //ÖÿնÓÁÐ rear=1; que[1]=t; do

{ front=front%maxsize+1; //³ö¶Ó t=que[front]; printf(t->data);

if (t->lchild!=NULL) //×ó×ÓÊ÷µÄ¸ù½áµãÈë¶Ó { rear=rear%maxsize+1;

que[rear]=t->lchild;

}

if (t->rchild!=NULL) //ÓÒ×ÓÊ÷µÄ¸ù½áµãÈë¶Ó { rear=rear%maxsize+1; que[rear]=t->rchild;

}

}while (rear= =front); //¶ÓÁÐΪ¿Õʱ½áÊø }

}

3. ½â´ð£ºÉè¸ÃÏßË÷¶þ²æÊ÷ÀàÐÍΪbithptr£¬°üº¬5¸öÓò£ºlchild£¬ltag£¬data£¬rchild£¬rtag¡£ insert(p, s) //½«s½áµã×÷ΪpµÄÓÒ×ÓÊ÷²åÈë BiThrNode *p,*s; { BiThrNode *q;

if (p->rtag= =1) //ÎÞÓÒ×ÓÊ÷£¬ÔòÓÐÓÒÏßË÷ { s->rchild=p->rchild; s->rtag=1; p->rchild=s;

-25-

p->rtag=0; } else

{ q=p->rchild;

while(q->ltag= =0) //²éÕÒpËùÖ¸½áµãÖÐÐòºó¼Ì£¬¼´ÎªÆäÓÒ×ÓÊ÷ÖÐ×î×óϵĽáµã

q=q->lchild;

q->lchild=p->rchild; s->rtag=0; p->rchild=s; }

s->lchild=p; //½«s½áµãµÄ×óÏßË÷Ö¸Ïòp½áµã s->ltag=1;

}

4. ½â´ð£ºÀûÓÃÒ»¸ö¶ÓÁÐÀ´Íê³É£¬Éè¸Ã¶ÓÁÐÀàÐÍΪָÕëÀàÐÍ£¬×î´óÈÝÁ¿Îªmaxnum¡£Ëã·¨ÖеÄfrontΪ¶ÓÍ·Ö¸Õ룬rearΪ¶ÓβָÕ룬Èôµ±Ç°¶ÓÍ·½áµãµÄ×ó¡¢ÓÒ×ÓÊ÷µÄ¸ù½áµã²»ÊÇËùÇó½áµã£¬Ôò½«Á½×ÓÊ÷µÄ¸ù½áµãÈë¶Ó£¬·ñÔò£¬¶ÓÍ·Ö¸ÕëËùÖ¸½áµã¼´Îª½áµãµÄË«Çס£ parentjudge(t,n) BiTree *t; int n;

{ BiTree *que[maxnum];

int front,rear; BiTree *parent; parent=NULL; if (t)

if (t->data= =n)

printf(¡°no parent!¡±); //nÊǸù½áµã£¬ÎÞË«Ç× else

{ front=0; //³õʼ»¯¶ÓÁÐ

rear=1;

que[1]=t; //¸ù½áµã½ø¶Ó do

{ front=front%maxsize+1; t=que[front];

if((t->lchild->data= =n)|| (t->rchild->data= =n)) //½áµãnÓÐË«Ç× { parent=t; front=rear;

printf(¡°parent¡±,t->data);

}

-26-

else

{ if (t->lchild!=NULL) //×ó×ÓÊ÷µÄ¸ù½áµãÈë¶Ó

{ rear=rear%maxsize+1; }

}while(rear= =front); //¶Ó¿Õʱ½áÊø

}

if (parent = =NULL) printf(¡°½áµã²»´æÔÚ¡±);

}

if (t->rchild!=NULL) //ÓÒ×ÓÊ÷µÄ¸ù½áµãÈë¶Ó { rear=rear%maxsize+1; que[rear]=t->rchild; }

que[rear]=t->lchild;

}

ϰÌâ6

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼÖУ¬ÈôËùÓж¥µãµÄ³ö¶ÈÊýÖ®ºÍΪs£¬ÔòËùÓж¥µãµÄÈë¶ÈÊýÖ®ºÍΪ( )¡£

A. s A. s A. n A. n

B. s-1 B. s-1 B. e

C. s+1 C. s+1

D. n D. 2s

2. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼÖУ¬ÈôËùÓж¥µãµÄ³ö¶ÈÊýÖ®ºÍΪs£¬ÔòËùÓж¥µãµÄ¶ÈÊýÖ®ºÍΪ( )¡£ 3. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòͼÖУ¬Èô¾ßÓÐeÌõ±ß£¬ÔòËùÓж¥µãµÄ¶ÈÊýÖ®ºÍΪ( )¡£

C. n+e

D. 2e D. n(n+1)/2

4. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÍêȫͼÖУ¬Ëùº¬µÄ±ßÊýΪ( )¡£

B. n(n-1)

C. n(n-1)/2

5. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòÍêȫͼÖУ¬Ëùº¬µÄ±ßÊýΪ( )¡£

A. n A. k A. 0

B. n(n-1)

C. n(n-1)/2 D. n(n+1)/2

6. ÔÚÒ»¸öÎÞÏòͼÖУ¬ÈôÁ½¶¥µãÖ®¼äµÄ·¾¶³¤¶ÈΪk£¬Ôò¸Ã·¾¶ÉϵĶ¥µãÊýΪ( )¡£

B. k+1 C. k+2 D. 2k B. 1 C. n D. n+1

7. ¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÁ¬Í¨Í¼£¬Ëü°üº¬µÄÁ¬Í¨·ÖÁ¿µÄ¸öÊýΪ( )¡£

8. ÈôÒ»¸öͼÖаüº¬ÓÐk¸öÁ¬Í¨·ÖÁ¿£¬ÈôÒª°´ÕÕÉî¶ÈÓÅÏÈËÑË÷µÄ·½·¨·ÃÎÊËùÓж¥µã£¬Ôò±ØÐëµ÷ÓÃ( )´ÎÉî¶ÈÓÅÏÈËÑË÷±éÀúµÄËã·¨¡£

A. k

B. 1 C. k-1 D. k+1

9. ÈôÒª°Ñn¸ö¶¥µãÁ¬½ÓΪһ¸öÁ¬Í¨Í¼£¬ÔòÖÁÉÙÐèÒª( )Ìõ±ß¡£

-27-

A. n

¸öÊýΪ( )¡£

A. n A. n A. n

Ϊ( )¡£

A. n A. 1

ÊýΪ( )¡£

A. k1

µãÊýΪ( )¡£

A. k1

B. n+1 C. n-1 D. 2n

10. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼµÄÁÚ½Ó¾ØÕóÖУ¬±íʾ±ß´æÔÚµÄÔªËØ£¨ÓÖ³ÆÎªÓÐÐ§ÔªËØ£©µÄ

B. n?e C. e D. 2?e B. n?e C. e D. 2?e B. n?e

C. e D. 2?e

11. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÓÐÏòͼµÄÁÚ½Ó¾ØÕóÖУ¬±íʾ±ß´æÔÚµÄÔªËØ¸öÊýΪ( )¡£ 12. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼµÄÁÚ½Ó±íÖУ¬±ß½áµãµÄ¸öÊýΪ( )¡£

13. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÓÐÏòͼµÄÁÚ½Ó±íÖУ¬±£´æ¶¥µãµ¥Á´±íµÄ±íÍ·Ö¸ÕëÏòÁ¿µÄ´óСÖÁÉÙ

B. 2n

C. e D. 2e

14. ÔÚÒ»¸öÎÞȨͼµÄÁÚ½Ó±í±íʾÖУ¬Ã¿¸ö±ß½áµãÖÁÉÙ°üº¬( )Óò¡£

B. 2 C. 3 D. 4

15. ¶ÔÓÚÒ»¸öÓÐÏòͼ£¬ÈôÒ»¸ö¶¥µãµÄ¶ÈΪk1£¬³ö¶ÈΪk2£¬Ôò¶ÔÓ¦ÁÚ½Ó±íÖиö¥µãµ¥Á´±íÖеı߽áµã

B. k2 C. k1-k2 D. k1+k2

16. ¶ÔÓÚÒ»¸öÓÐÏòͼ£¬ÈôÒ»¸ö¶¥µãµÄ¶ÈΪk1£¬³ö¶ÈΪk2£¬Ôò¶ÔӦĿÁÚ½Ó±íÖиö¥µãµ¥Á´±íÖеı߽á

B. k2 C. k1-k2 D. k1+k2

17. ¶ÔÓÚÒ»¸öÎÞÏòͼ£¬ÏÂÃæ( )ÖÖ˵·¨ÊÇÕýÈ·µÄ¡£

A. ÿ¸ö¶¥µãµÄÈë¶ÈµÈÓÚ³ö¶È B. ÿ¸ö¶¥µãµÄ¶ÈµÈÓÚÆäÈë¶ÈÓë³ö¶ÈÖ®ºÍ C. ÿ¸ö¶¥µãµÄÈë¶ÈΪ0 A. ³ö±ßÊý B. Èë±ßÊý

Ë÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ( )¡£

A. A,B,C,F,D,E B. A,C,F,D,E,B C. A,B,D,C,F,E D. A,B,D,F,E,C

20. ÈôÒ»¸öͼµÄ±ß¼¯Îª{(A,B),(A,C),(B,D),(C,F),(D,E),(D,F)}£¬Ôò´Ó¶¥µãA¿ªÊ¼¶Ô¸Ãͼ½øÐйã¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ( )¡£

A. A,B,C,D,E,F B. A,B,C,F,D,E C. A,B,D,C,E,F D. A,C,B,F,D,E

21. ÈôÒ»¸öͼµÄ±ß¼¯Îª{<1,2>,<1,4>,<2,5>,<3,1>,<3,5>,<4,3>}£¬Ôò´Ó¶¥µã1¿ªÊ¼¶Ô¸Ãͼ½øÐÐÉî¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ( )¡£

A. 1,2,5,4,3 B. 1,2,3,4,5 C. 1,2,5,3,4 D. 1,4,3,2,5

22. ÈôÒ»¸öͼµÄ±ß¼¯Îª{<1,2>,<1,4>,<2,5>,<3,1>,<3,5>,<4,3>}£¬Ôò´Ó¶¥µã1¿ªÊ¼¶Ô¸Ãͼ½øÐйã¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ( )¡£

D. ÿ¸ö¶¥µãµÄ³ö¶ÈΪ0 C. ¶ÈÊý

D. ¶ÈÊý¼õ1

18. ÔÚÒ»¸öÓÐÏòͼµÄÁÚ½Ó±íÖУ¬Ã¿¸ö¶¥µãµ¥Á´±íÖнáµãµÄ¸öÊýµÈÓڸö¥µãµÄ( )¡£

19. ÈôÒ»¸öͼµÄ±ß¼¯Îª{(A,B),(A,C),(B,D),(C,F),(D,E),(D,F)}£¬Ôò´Ó¶¥µãA¿ªÊ¼¶Ô¸Ãͼ½øÐÐÉî¶ÈÓÅÏÈËÑ

-28-

A. 1,2,3,4,5 B. 1,2,4,3,5 C. 1,2,4,5,3 D. 1,4,2,5,3

23. ÓÉÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÁ¬Í¨Í¼Éú³ÉµÄ×îСÉú³ÉÊ÷ÖУ¬¾ßÓÐ( )Ìõ±ß¡£

A. n

ÐòÁÐΪ( )¡£

A. a,b,c,d,e B. a,b,d,e,b C. a,c,b,e,d D. a,c,d,b,e

¶þ¡¢Ìî¿ÕÌâ

1. ÔÚÒ»¸öͼÖУ¬ËùÓж¥µãµÄ¶ÈÊýÖ®ºÍµÈÓÚËùÓбßÊýµÄ________±¶¡£

2. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÍêȫͼÖУ¬°üº¬ÓÐ________Ìõ±ß£¬ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòÍêȫͼÖУ¬°üº¬ÓÐ________Ìõ±ß¡£

3. ¼Ù¶¨Ò»¸öÓÐÏòͼµÄ¶¥µã¼¯Îª{a,b,c,d,e,f}£¬±ß¼¯Îª{, , , , , }£¬Ôò³ö¶ÈΪ0µÄ¶¥µã¸öÊýΪ________£¬Èë¶ÈΪ1µÄ¶¥µã¸öÊýΪ________¡£

4. ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòͼÖУ¬ÒªÁ¬Í¨ËùÓж¥µãÔòÖÁÉÙÐèÒª________Ìõ±ß¡£ 5. ±íʾͼµÄÁ½ÖÖ´æ´¢½á¹¹Îª__________ºÍ__________¡£ 6. ÔÚÒ»¸öÁ¬Í¨Í¼ÖдæÔÚ×Å________¸öÁ¬Í¨·ÖÁ¿¡£

7. ͼÖеÄÒ»Ìõ·¾¶³¤¶ÈΪk£¬¸Ã·¾¶Ëùº¬µÄ¶¥µãÊýΪ________¡£

8. ÈôÒ»¸öͼµÄ¶¥µã¼¯Îª{a,b,c,d,e,f}£¬±ß¼¯Îª{(a,b),(a,c),(b,c),(d,e)}£¬Ôò¸Ãͼº¬ÓÐ________¸öÁ¬Í¨·ÖÁ¿¡£ 9. ¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄͼ£¬Èô²ÉÓÃÁÚ½Ó¾ØÕó±íʾ£¬Ôò¾ØÕó´óСÖÁÉÙΪ________?________¡£ 10. ¶ÔÓÚ¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÓÐÏòͼºÍÎÞÏòͼ£¬ÔÚËüÃǶÔÓ¦µÄÁÚ½Ó±íÖУ¬Ëùº¬±ß½áµãµÄ¸öÊý·Ö±ðΪ________ºÍ________¡£

11. ÔÚÓÐÏòͼµÄÁÚ½Ó±íºÍÄæÁÚ½Ó±í±íʾÖУ¬Ã¿¸ö¶¥µãÁÚ½Ó±í·Ö±ðÁ´½Óןö¥µãµÄËùÓÐ________ºÍ________½áµã¡£

12. ¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼ£¬µ±·Ö±ð²ÉÓÃÁÚ½Ó¾ØÕóºÍÁÚ½Ó±í±íʾʱ£¬ÇóÈÎÒ»¶¥µã¶ÈÊýµÄʱ¼ä¸´ÔÓ¶È·Ö±ðΪ________ºÍ________¡£

13. ¼Ù¶¨Ò»¸öͼ¾ßÓÐn¸ö¶¥µãºÍeÌõ±ß£¬Ôò²ÉÓÃÁÚ½Ó¾ØÕóºÍÁÚ½Ó±í±íʾʱ£¬ÆäÏàÓ¦µÄ¿Õ¼ä¸´ÔÓ¶È·Ö±ðΪ________ºÍ________¡£

14. Ò»¸öͼµÄ±ß¼¯Îª{(a,c),(a,e),(b,e),(c,d),(d,e)}£¬´Ó¶¥µãa³ö·¢½øÐÐÉî¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ____________£¬´Ó¶¥µãa³ö·¢½øÐйã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ____________¡£

15. Ò»¸öͼµÄ±ß¼¯Îª{,,,,,}£¬´Ó¶¥µãa³ö·¢½øÐÐÉî¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ____________£¬´Ó¶¥µãa³ö·¢½øÐйã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ____________¡£ 16. ͼµÄ________ÓÅÏÈËÑË÷±éÀúËã·¨ÊÇÒ»ÖֵݹéËã·¨£¬Í¼µÄ________ÓÅÏÈËÑË÷±éÀúËã·¨ÐèҪʹÓöÓÁС£

17. ¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÁ¬Í¨Í¼£¬ÆäÉú³ÉÊ÷ÖеĶ¥µãÊýºÍ±ßÊý·Ö±ðΪ________ºÍ________¡£

18. ÈôÒ»¸öÁ¬Í¨Í¼ÖÐÿ¸ö±ßÉϵÄȨֵ¾ù²»Í¬£¬ÔòµÃµ½µÄ×îСÉú³ÉÊ÷ÊÇ________£¨Î¨Ò»/²»Î¨Ò»£©µÄ¡£ 19. ¸ù¾ÝͼµÄ´æ´¢½á¹¹½øÐÐijÖÖ´ÎÐòµÄ±éÀú£¬µÃµ½µÄ¶¥µãÐòÁÐÊÇ__£¨Î¨Ò»/²»Î¨Ò»£©µÄ¡£

20. ¼Ù¶¨Ò»¸öÓÐÏòͼµÄ±ß¼¯Îª{,,,,,}£¬¶Ô¸Ãͼ½øÐÐÍØÆËÅÅÐòµÃµ½µÄ¶¥µã

B. n-1

C. n+1 D. 2?n

24. ÒÑÖªÒ»¸öÓÐÏòͼµÄ±ß¼¯Îª{,,,,,}£¬ÔòÓɸÃͼ²úÉúµÄÒ»ÖÖ¿ÉÄܵÄÍØÆË

-29-

ÐòÁÐΪ________¡£ Èý¡¢Ó¦ÓÃÌâ

1. ¶ÔÓÚÒ»¸öÎÞÏòͼ6-11(a)£¬¼Ù¶¨²ÉÓÃÁÚ½Ó¾ØÕó±íʾ£¬ÊÔ·Ö±ðд³ö´Ó¶¥µã0³ö·¢°´Éî¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁкͰ´¹ã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁС£ ×¢£ºÃ¿Ò»ÖÖÐòÁж¼ÊÇΨһµÄ£¬ÒòΪ¶¼ÊÇÔÚ´æ´¢½á¹¹Éϵõ½µÄ¡£

2. ¶ÔÓÚÒ»¸öÓÐÏòͼ6-11(b)£¬¼Ù¶¨²ÉÓÃÁÚ½Ó±í±íʾ£¬²¢ÇÒ¼Ù¶¨Ã¿¸ö¶¥µãµ¥Á´±íÖеı߽áµãÊǰ´³ö±ßÁÚ½ÓµãÐòºÅ´Ó´óµ½Ð¡µÄ´ÎÐòÁ´½ÓµÄ£¬ÊÔ·Ö±ðд³ö´Ó¶¥µã0³ö·¢°´Éî¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁкͰ´¹ã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁС£

×¢£ºÃ¿Ò»ÖÖÐòÁж¼ÊÇΨһµÄ£¬ÒòΪ¶¼ÊÇÔÚ´æ´¢½á¹¹Éϵõ½µÄ¡£

ËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁС£

4. ÒÑÖªÒ»¸öÎÞÏòͼµÄÁÚ½Ó±íÈçͼ6-12(b)Ëùʾ£¬ÊÔд³ö´Ó¶¥µã0³ö·¢·Ö±ð½øÐÐÉî¶ÈÓÅÏȺ͹ã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁС£

5. ÒÑ֪ͼ6-13ËùʾµÄÒ»¸öÍø£¬°´ÕÕPrim·½·¨£¬´Ó¶¥µã1 ³ö·¢£¬Çó¸ÃÍøµÄ×îСÉú³ÉÊ÷µÄ²úÉú¹ý³Ì¡£ 6. ÒÑ֪ͼ6-13ËùʾµÄÒ»¸öÍø£¬°´ÕÕKruskal·½·¨£¬Çó¸ÃÍøµÄ×îСÉú³ÉÊ÷µÄ²úÉú¹ý³Ì¡£

(a) (b)

ͼ6-12

ͼ6-11

0 1 7 2 8 (a)

0 5 9 3 4 3 6 1 4 7 (b)

2 5 8 6 3. ÒÑÖªÒ»¸öÎÞÏòͼµÄÁÚ½Ó¾ØÕóÈçͼ6-12(a)Ëùʾ£¬ÊÔд³ö´Ó¶¥µã0³ö·¢·Ö±ð½øÐÐÉî¶ÈÓÅÏȺ͹ã¶ÈÓÅÏÈ

50 V2 40 V1 65 50 V5 60 52 V4 V3 42 30 V6 45 V7 70 -30-

ͼ6-13

7. ͼ6-14ËùʾΪһ¸öÓÐÏòÍøÍ¼¼°Æä´øÈ¨ÁÚ½Ó¾ØÕó£¬ÒªÇó¶ÔÓÐÏòͼ²ÉÓÃDijkstraËã·¨£¬Çó´ÓV0 µ½ÆäÓà¸÷¶¥µãµÄ×î¶Ì·¾¶¡£

ËÄ¡¢Ëã·¨Éè¼ÆÌâ

int degree1(Graph & ga, int numb)

2. ±àдһ¸öËã·¨£¬Çó³öÁÚ½Ó¾ØÕó±íʾµÄÓÐÏòͼÖÐÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý¡£ int degree2(Graph & ga, int numb)

ͼ6-15

1. ±àдһ¸öËã·¨£¬Çó³öÁÚ½Ó¾ØÕó±íʾµÄÎÞÏòͼÖÐÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý¡£

a1=3 a3=2 100 V0 30 V5 60 V4 ¡Þ ¡Þ 10 ¡Þ 30 100 ¡Þ ¡Þ 5 ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ 50 ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ 10 ¡Þ ¡Þ ¡Þ 20 ¡Þ 60 ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ (b) ´øÈ¨ÁÚ½Ó¾ØÕó 10 V1 5 V2 10 20 50 V3 (a) ÓÐÏò´øÈ¨Í¼

8. ͼ6-15¸ø³öÁËÒ»¸ö¾ßÓÐ15¸ö»î¶¯¡¢¸öʼþµÄ¹¤³ÌµÄAOEÍø£¬Ç󹨼ü·¾¶¡£ ͼ6-14 11ÓÐÏò´øÈ¨Í¼¼°ÆäÁÚ½Ó¾ØÕó

v4 v2 v1 a2=4 a7=6 a4=1 v7 a8=8 a11=7 v5 a5=3 a9=4 v3 a6=5 a13=10 v8 a12=4 v1001 a14=1v11 a15=6 v6 a10=2 v9 -31-

3. ±àдһ¸öËã·¨£¬Çó³öÁÚ½Ó±í±íʾµÄÎÞÏòͼÖÐÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý¡£ int degree3(GraphL & gl, int numb)

4. ±àдһ¸öËã·¨£¬Çó³öÁÚ½Ó±í±íʾµÄÓÐÏòͼÖÐÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý¡£ int degree4(GraphL & gl, int numb)

ϰÌâ6²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. A 2. D 3. D 4. C 5. B 6. B 7. B 8. A 9. C 10. D 11. C 12. D 13. A 14. B 15. B 17. A 18. A 19. B 20. D 21. A 22. C 23. B 24. A ¶þ¡¢Ìî¿ÕÌâ

1. 2 2. n(n-1)/2£¬n(n-1) 3. 2£¬4 4. n-1 5. ÁÚ½Ó¾ØÕó£¬ÁÚ½Ó±í 6. 1 7. k+1 8. 3

9. n£¬n 10. 2e£¬e 11. ³ö±ß£¬Èë±ß 12. O£¨n£©£¬O£¨e/n£©

13.O£¨n2

£©£¬O£¨n+e£© 14. acdeb£¬acedb £¨´ð°¸²»Î¨Ò»£© 15. acfebd£¬acefbd £¨´ð°¸²»Î¨Ò»£© 16. Éî¶È£¬¹ã¶È 17. n£¬n-1

18. Ψһ

19. Ψһ 20. aebdcf£¨´ð°¸²»Î¨Ò»£© Èý¡¢Ó¦ÓÃÌâ

1. Éî¶ÈÓÅÏÈËÑË÷ÐòÁУº0,1,2,8,3,4,5,6,7,9 ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº0,1,4,2,7,3,8,6,5,9 2. Éî¶ÈÓÅÏÈËÑË÷ÐòÁУº0,4,7,5,8,3,6,1,2 ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº0,4,3,1,7,5,6,2,8 3. Éî¶ÈÓÅÏÈËÑË÷ÐòÁУº0,2,3,5,6,1,4 ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº0,2,3,5,6,1,4 4. Éî¶ÈÓÅÏÈËÑË÷ÐòÁУº0,3,6,4,1,5,2 ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº0,3,2,6,5,4,1 5. ¹ý³ÌÈçͼ6-16Ëùʾ 60 50 V1 52 V3 45 V1 V3 50 V1 V3 V2 65 50 V4 42 V7 V2 V4 V7 V2 V4 V7 30 40 V5 V6 V5 V6 V5 V6 70 (a)

(b)

(c)

-32-

16. C 50 V1 V3 50 V1 V3 50 V1 V3 V2 V4 V7 V7 V2 V4 V7 V2 V4 50 30 40 V5 V6 40 50 V5 V6 40 V5 V6 (d)

(e)

(f)

V3 50 V1 V3 50 V1 45 V2 V4 42 V7 V2 V4 42 40 50 30 V7 50 30 V5 V6 40 V5 V6 (g)

(h)

ͼ6-16

6. Çó½â¹ý³ÌÈçͼ6-17Ëùʾ¡£ V1 V3 V1 V3 V1 V3 V2 V4 V7 V2 V4 V7 V2 V4 42 V7 V5 30 V6 40 V5 30 V6 40 V5 30 V6 (a)

(b)

(c)

V1 V3 V1 V3 V1 V3 V2 V4 42 45 50 45 V7 V2 V4 42 45 50 V7 V2 42 40 V5 30 40 50 V4 V7 V6 V5 30 V6 40 V5 30 V6 (d)

(e)

(f)

ͼ6-17

7. Çó½â¹ý³ÌÈçϱíËùʾ¡£ Öյ㠴Óv0µ½¸÷ÖÕµãµÄDÖµºÍ×î¶Ì·¾¶µÄÇó½â¹ý³Ì i=1 i=2 i=3 i=4 i=5 V1 ¡Þ ¡Þ ¡Þ ¡Þ ¡Þ ÎÞ V2 10 (v0,v2) -33-

V3 ¡Þ 60 50 (v0,v2,v3) (v0,v4,v3)

V4 30 30 (v0,v4) (v0,v4) V5 100 100 90 60 (v0,v5) (v0,v5) (v0,v4,v5) (v0,v4,v3,v5) Vj V2 V4 V3 V5 S {v0,v2} {v0,v2,v4} {v0,v2,v3,v4} {v0,v2,v3,v4,v5}

8. Çó½â¹ý³ÌÈçÏ£º ¢ÙʼþµÄ×îÔç·¢Éúʱ¼äve[k]¡£

ve (1)=0 ve (2)=3 ve (3)=4 ve (4)=ve(2)+2=5

ve (5)=max{ve(2)+1,ve(3)+3}=7 ve (6)=ve(3)+5=9

ve (7)=max{ve(4)+6,ve(5)+8}=15 ve (8)=ve(5)+4=11

ve (9)=max{ve(8)+10,ve(6)+2}=21 ve (10)=max{ve(8)+4,ve(9)+1}=22 ve (11)=max{ve(7)+7,ve(10)+6}=28

¢ÚʼþµÄ×î³Ù·¢Éúʱ¼ävl[k]¡£ vl (11)= ve (11)=28 vl (10)= vl (11)-6=22 vl (9)= vl (10)-1=21

vl (8)=min{ vl (10)-4, vl (9)-10}=11 vl (7)= vl (11)-7=21 vl (6)= vl (9)-2=19

vl (5)=min{ vl (7)-8,vl (8)-4}=7 vl (4)= vl (7)-6=15

vl (3)=min{ vl (5)-3, vl (6)-5}=4 vl (2)=min{ vl (4)-2, vl (5)-1}=6 vl (1)=min{vl (2)-3, vl (3)-4}=0

¢Û»î¶¯aiµÄ×îÔ翪ʼʱ¼äe[i]ºÍ×îÍí¿ªÊ¼Ê±¼äl[i]¡£

»î¶¯a1 e (1)=ve (1)=0 l (1)=vl (2) -3 =3 »î¶¯a2 e (2)=ve (1)=0 l (2)=vl (3) - 4=0 »î¶¯a3 e (3)=ve (2)=3 l (3)=vl (4) - 2=13 »î¶¯a4 e (4)=ve (2)=3 l (4)=vl (5) - 1=6

-34-

»î¶¯a5 e (5)=ve (3)=4 l (5)=vl (5) - 3=4 »î¶¯a6 e (6)=ve (3)=4 l (6)=vl (6) - 5=14 »î¶¯a7 e (7)=ve (4)=5 l (7)=vl (7) - 6=15 »î¶¯a8 e (8)=ve (5)=7 l (8)=vl (7) - 8=13 »î¶¯a9 e (9)=ve (5)=7 l (9)=vl (8) - 4=7 »î¶¯a10 e (10)=ve (6)=9 l (10)=vl (9) - 2=19 »î¶¯a11 e (11)=ve (7)=15 l (11)=vl (11) - 7=21 »î¶¯a12 e (12)=ve (8)=11 l (12)=vl (10) - 4=18 »î¶¯a13 e (13)=ve (8)=11 l (13)=vl (9) - 10=11 »î¶¯a14 e (14)=ve (9)=21 l (14)=vl (10) -1=21 »î¶¯a15 e (15)=ve (10)=22 l (15)=vl (11) -6 =22

¢Ü×îºó£¬±È½Ïe[i]ºÍl[i]µÄÖµ¿ÉÅжϳöa2,a5,a9,a13,a14,a15Êǹؼü»î¶¯£¬¹Ø¼ü·¾¶Èçͼ6-18Ëùʾ¡£

a9=4 v1 a2=4 v5 v3 a5=3 v11 a15=6 v8 a13=10 v9

ËÄ¡¢Ëã·¨Éè¼ÆÌâ

ͼ6-18

01 a14=1 v101. int degree1(Graph & ga, int numb)

{ //¸ù¾ÝÎÞÏòͼµÄÁÚ½Ó¾ØÕóÇó³öÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý int j,d=0;

for(j=0; j

if (ga.cost[numb][j]!=0 && ga.cost[numb][j]!=MAXINT)

d++;

return (d); }

2. int degree2(Graph & ga, int numb)

//¸ù¾ÝÓÐÏòͼµÄÁÚ½Ó¾ØÕóÇó³öÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý { int i,j,d=0;

//Çó³ö¶¥µãnumbµÄ³ö¶È for(j=0; j

if(ga.cost[numb][j]!=0 && ga.cost[numb][j]!=MAXINT)

-35-

d++;

//Çó³ö¶¥µãnumbµÄÈë¶È

for(i=0; i

d++;

//·µ»Ø¶¥µãnumbµÄ¶È return (d);

}

3. int degree3(GraphL & gl, int numb)

//¸ù¾ÝÎÞÏòͼµÄÁÚ½Ó±íÇó³öÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý { int d=0;

vexnode * p=gl.adjlist[numb]; while(p!=NULL)

{ d++;

p=p->next;

} return (d); }

4. int degree4(GraphL & gl, int numb)

//¸ù¾ÝÓÐÏòͼµÄÁÚ½Ó±íÇó³öÐòºÅΪnumbµÄ¶¥µãµÄ¶ÈÊý { int d=0, i;

vexnode * p=gl.adjlist[numb];

while (p!=NULL)

{ d++; p=p->next;

} //Çó³ö¶¥µãnumbµÄ³ö¶È

for(i=0; i

while(p!=NULL)

{ if(p->vertex= =numb) d++;

p=p->next;

}

}//Çó³ö¶¥µãnumbµÄÈë¶È

return (d); //·µ»Ø¶¥µãnumbµÄ¶ÈÊý }

-36-

ϰÌâ7

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. Èô²éÕÒÿ¸öÔªËØµÄ¸ÅÂÊÏàµÈ£¬ÔòÔÚ³¤¶ÈΪnµÄ˳Ðò±íÉϲéÕÒÈÎÒ»ÔªËØµÄƽ¾ù²éÕÒ³¤¶ÈΪ( )¡£

A. n

µÄ9·ÖÖ®Ò»¡£

A. 20 A. 3

´ÎÊýΪ( )¡£

A. 2 A. O(n)

B. 3 C. 4 B. O(n) C. O(1)

2

B. n+1 C. (n-1)/2 D. (n+1)/2

2. ¶ÔÓÚ³¤¶ÈΪ9µÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓÃÕÛ°ë²éÕÒ£¬ÔڵȸÅÂÊÇé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶ÈΪ( )

B. 18 C. 25 D. 22 B. 4 C. 5

D. 6

3. ¶ÔÓÚ³¤¶ÈΪ18µÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓÃÕÛ°ë²éÕÒ£¬Ôò²éÕÒµÚ15¸öÔªËØµÄ±È½Ï´ÎÊýΪ( )¡£ 4. ¶ÔÓÚ˳Ðò´æ´¢µÄÓÐÐò±í(5,12,20,26,37,42,46,50,64)£¬Èô²ÉÓÃÕÛ°ë²éÕÒ£¬Ôò²éÕÒÔªËØ26µÄ±È½Ï

D. 5 D. O(log2n)

5. ¶Ô¾ßÓÐn¸öÔªËØµÄÓÐÐò±í²ÉÓÃÕÛ°ë²éÕÒ£¬ÔòËã·¨µÄʱ¼ä¸´ÔÓ¶ÈΪ( )¡£

6. ÔÚË÷Òý²éÕÒÖУ¬ÈôÓÃÓÚ±£´æÊý¾ÝÔªËØµÄÖ÷±íµÄ³¤¶ÈΪn£¬Ëü±»¾ù·ÖΪk¸ö×Ó±í£¬Ã¿¸ö×Ó±íµÄ³¤¶È¾ùΪn/k£¬ÔòË÷Òý²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ( )¡£

A. n+k

B. k+n/k C. (k+n/k)/2 D. (k+n/k)/2+1

7. ÔÚË÷Òý²éÕÒÖУ¬ÈôÓÃÓÚ±£´æÊý¾ÝÔªËØµÄÖ÷±íµÄ³¤¶ÈΪ144£¬Ëü±»¾ù·ÖΪ12×Ó±í£¬Ã¿¸ö×Ó±íµÄ³¤¶È¾ùΪ12£¬ÔòË÷Òý²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ( )¡£

A. 13

B. 24 C. 12 D. 79

2

8. ´Ó¾ßÓÐn¸ö½áµãµÄ¶þ²æÅÅÐòÊ÷ÖвéÕÒÒ»¸öÔªËØÊ±£¬ÔÚÆ½¾ùÇé¿öϵÄʱ¼ä¸´ÔÓ¶È´óÖÂΪ( )¡£

A. O(n) B. O(1) C. O(log2n) D. O(n)

9. ´Ó¾ßÓÐn¸ö½áµãµÄ¶þ²æÅÅÐòÊ÷ÖвéÕÒÒ»¸öÔªËØÊ±£¬ÔÚ×Çé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪ( )¡£

A. O(n) B. O(1) C. O(log2n) D. O(n)

10. ÔÚÒ»¿Ãƽºâ¶þ²æÅÅÐòÊ÷ÖУ¬Ã¿¸ö½áµãµÄƽºâÒò×ÓµÄȡֵ·¶Î§ÊÇ( )¡£

A. -1?1 B. -2?2 C. 1?2 D. 0?1

11. Èô¸ù¾Ý²éÕÒ±í(23,44,36,48,52,73,64,58)½¨Á¢¹þÏ£±í£¬²ÉÓÃh(K)=K¼ÆËã¹þÏ£µØÖ·£¬ÔòÔªËØ64µÄ¹þÏ£µØÖ·Îª( )¡£

A. 4 B. 8

Ö·µÈÓÚ3µÄÔªËØ¸öÊý( )¡£

A. 1 B. 2

C. 3

D. 4

13. Èô¸ù¾Ý²éÕÒ±í½¨Á¢³¤¶ÈΪmµÄ¹þÏ£±í£¬²ÉÓÃÏßÐÔ̽²â·¨´¦Àí³åÍ»£¬¼Ù¶¨¶ÔÒ»¸öÔªËØµÚÒ»´Î¼ÆËãµÄ¹þÏ£µØÖ·Îªd£¬ÔòÏÂÒ»´ÎµÄ¹þÏ£µØÖ·Îª( )¡£

A. d B. d+1

¶þ¡¢Ìî¿ÕÌâ

1. ÒÔ˳Ðò²éÕÒ·½·¨´Ó³¤¶ÈΪnµÄ˳Ðò±í»òµ¥Á´±íÖвéÕÒÒ»¸öÔªËØÊ±£¬Æ½¾ù²éÕÒ³¤¶ÈΪ________£¬Ê±

C. (d+1)/m

D. (d+1)%m

C. 12

D. 13

12. Èô¸ù¾Ý²éÕÒ±í(23,44,36,48,52,73,64,58)½¨Á¢¹þÏ£±í£¬²ÉÓÃh(K)=K%7¼ÆËã¹þÏ£µØÖ·£¬Ôò¹þÏ£µØ

2

-37-

¼ä¸´ÔÓ¶ÈΪ________¡£

2. ¶Ô³¤¶ÈΪnµÄ²éÕÒ±í½øÐвéÕÒʱ£¬¼Ù¶¨²éÕÒµÚi¸öÔªËØµÄ¸ÅÂÊΪpi,²éÕÒ³¤¶È£¨¼´ÔÚ²éÕÒ¹ý³ÌÖÐÒÀ´ÎͬÓйØÔªËرȽϵÄ×Ü´ÎÊý£©Îªci£¬ÔòÔÚ²éÕҳɹ¦Çé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶ÈµÄ¼ÆË㹫ʽΪ________¡£ 3. ¼Ù¶¨Ò»¸ö˳Ðò±íµÄ³¤¶ÈΪ40£¬²¢¼Ù¶¨²éÕÒÿ¸öÔªËØµÄ¸ÅÂʶ¼Ïàͬ£¬ÔòÔÚ²éÕҳɹ¦Çé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶È________£¬ÔÚ²éÕÒ²»³É¹¦Çé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶È________¡£

4. ÒÔÕÛ°ë²éÕÒ·½·¨´Ó³¤¶ÈΪnµÄÓÐÐò±íÖвéÕÒÒ»¸öÔªËØÊ±£¬Æ½¾ù²éÕÒ³¤¶ÈÔ¼µÈÓÚ________µÄÏòÉÏÈ¡Õû¼õ1£¬Ê±¼ä¸´ÔÓ¶ÈΪ________¡£

5. ÒÔÕÛ°ë²éÕÒ·½·¨ÔÚÒ»¸ö²éÕÒ±íÉϽøÐвéÕÒʱ£¬¸Ã²éÕÒ±í±ØÐë×éÖ¯³É________´æ´¢µÄ________±í¡£ 6. ´ÓÓÐÐò±í(12,18,30,43,56,78,82,95)ÖзֱðÕÛ°ë²éÕÒ43ºÍ56ÔªËØÊ±£¬Æä±È½Ï´ÎÊý·Ö±ðΪ________ºÍ________¡£

7. ¼Ù¶¨¶Ô³¤¶Èn=50µÄÓÐÐò±í½øÐÐÕÛ°ë²éÕÒ£¬Ôò¶ÔÓ¦µÄÅж¨Ê÷¸ß¶ÈΪ________£¬×îºóÒ»²ãµÄ½áµãÊýΪ________¡£

8. ¼Ù¶¨ÔÚË÷Òý²éÕÒÖУ¬²éÕÒ±í³¤¶ÈΪn£¬Ã¿¸ö×Ó±íµÄ³¤¶ÈÏàµÈ£¬ÉèΪs£¬Ôò½øÐгɹ¦²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ____________¡£

9. ÔÚË÷Òý²éÕÒÖУ¬¼Ù¶¨²éÕÒ±í£¨¼´Ö÷±í£©µÄ³¤¶ÈΪ96£¬±»µÈ·ÖΪ8¸ö×Ó±í£¬Ôò½øÐÐË÷Òý²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ________¡£

10. ÔÚÒ»¿Ã¶þ²æÅÅÐòÊ÷ÖУ¬Ã¿¸ö·ÖÖ§½áµãµÄ×ó×ÓÊ÷ÉÏËùÓнáµãµÄÖµÒ»¶¨________¸Ã½áµãµÄÖµ£¬ÓÒ×ÓÊ÷ÉÏËùÓнáµãµÄÖµÒ»¶¨________¸Ã½áµãµÄÖµ¡£

11. ¶ÔÒ»¿Ã¶þ²æÅÅÐòÊ÷½øÐÐÖÐÐò±éÀúʱ£¬µÃµ½µÄ½áµãÐòÁÐÊÇÒ»¸ö________¡£

12. ´ÓÒ»¿Ã¶þ²æÅÅÐòÊ÷ÖвéÕÒÒ»¸öÔªËØÊ±£¬ÈôÔªËØµÄÖµµÈÓÚ¸ù½áµãµÄÖµ£¬Ôò±íÃ÷_______£¬ÈôÔªËØµÄֵСÓÚ¸ù½áµãµÄÖµ£¬Ôò¼ÌÐøÏò________²éÕÒ£¬ÈôÔªËØµÄÖµ´óÓÚ¸ù½áµãµÄÖµ£¬Ôò¼ÌÐøÏò________²éÕÒ¡£

13. ÏòÒ»¿Ã¶þ²æÅÅÐòÊ÷ÖвåÈëÒ»¸öÔªËØÊ±£¬ÈôÔªËØµÄֵСÓÚ¸ù½áµãµÄÖµ£¬Ôò½Ó×ÅÏò¸ù½áµãµÄ________²åÈ룬ÈôÔªËØµÄÖµ´óÓÚ¸ù½áµãµÄÖµ£¬Ôò½Ó×ÅÏò¸ù½áµãµÄ________²åÈë¡£ 14. ¸ù¾Ýn¸öÔªËØ½¨Á¢Ò»¿Ã¶þ²æÅÅÐòÊ÷µÄʱ¼ä¸´ÔÓ¶È´óÖÂΪ________¡£

15. ÔÚÒ»¿Ãƽºâ¶þ²æÅÅÐòÊ÷ÖУ¬Ã¿¸ö½áµãµÄ×ó×ÓÊ÷¸ß¶ÈÓëÓÒ×ÓÊ÷¸ß¶ÈÖ®²îµÄ¾ø¶ÔÖµ²»³¬¹ý________¡£ 16. ¼Ù¶¨¶ÔÏßÐÔ±í(38,25,74,52,48)½øÐйþÏ£´æ´¢£¬²ÉÓÃH(K)=K % 7×÷Ϊ¹þÏ£º¯Êý£¬²ÉÓÃÏßÐÔ̽²â·¨´¦Àí³åÍ»£¬ÔòÔÚ½¨Á¢¹þÏ£±íµÄ¹ý³ÌÖУ¬½«»áÅöµ½________´Î´æ´¢³åÍ»¡£

17. ¼Ù¶¨¶ÔÏßÐÔ±í(38,25,74,52,48)½øÐйþÏ£´æ´¢£¬²ÉÓÃH(K)=K % 7×÷Ϊ¹þÏ£º¯Êý£¬²ÉÓÃÏßÐÔ̽²â·¨´¦Àí³åÍ»£¬Ôòƽ¾ù²éÕÒ³¤¶ÈΪ________¡£

18. ÔÚÏßÐÔ±íµÄ¹þÏ£´æ´¢ÖУ¬×°ÌîÒò×Ó?ÓÖ³ÆÎª×°ÌîϵÊý£¬ÈôÓÃm±íʾ¹þÏ£±íµÄ³¤¶È£¬n±íʾÏßÐÔ±íÖеÄÔªËØµÄ¸öÊý£¬Ôò?µÈÓÚ________¡£

19. ¶ÔÏßÐÔ±í(18,25,63,50,42,32,90)½øÐйþÏ£´æ´¢Ê±£¬ÈôÑ¡ÓÃH(K)=K % 9×÷Ϊ¹þÏ£º¯Êý£¬Ôò¹þÏ£µØÖ·Îª0µÄÔªËØÓÐ________¸ö£¬¹þÏ£µØÖ·Îª5µÄÔªËØÓÐ________¸ö¡£ Èý¡¢Ó¦ÓÃÌâ

1. ÒÑÖªÒ»¸ö˳Ðò´æ´¢µÄÓÐÐò±íΪ(15,26,34,39,45,56,58,63,74,76)£¬ÊÔ»­³ö¶ÔÓ¦µÄÕÛ°ë²éÕÒÅж¨Ê÷£¬Çó³öÆäƽ¾ù²éÕÒ³¤¶È¡£

2. ¼Ù¶¨Ò»¸öÏßÐÔ±íΪ(38,52,25,74,68,16,30,54,90,72)£¬»­³ö°´ÏßÐÔ±íÖÐÔªËØµÄ´ÎÐòÉú³ÉµÄÒ»¿Ã¶þ²æÅÅÐòÊ÷£¬Çó³öÆäƽ¾ù²éÕÒ³¤¶È¡£

-38-

3. ¼Ù¶¨Ò»¸ö´ý¹þÏ£´æ´¢µÄÏßÐÔ±íΪ(32,75,29,63,48,94,25,46,18,70)£¬¹þÏ£µØÖ·¿Õ¼äΪHT[13]£¬Èô²ÉÓóýÁôÓàÊý·¨¹¹Ôì¹þÏ£º¯ÊýºÍÏßÐÔ̽²â·¨´¦Àí³åÍ»£¬ÊÔÇó³öÃ¿Ò»ÔªËØÔÚ¹þÏ£±íÖеijõʼ¹þÏ£µØÖ·ºÍ×îÖÕ¹þÏ£µØÖ·£¬»­³ö×îºóµÃµ½µÄ¹þÏ£±í£¬Çó³öƽ¾ù²éÕÒ³¤¶È¡£

ÔªËØ 32 75 29 63 48 94 25 46 18 70 ³õʼ¹þÏ£µØÖ· ×îÖÕ¹þÏ£µØÖ·

0 1 2 3 4 5 6 7 8 9 10 11 12 ¹þÏ£±í

4. ¼Ù¶¨Ò»¸ö´ý¹þÏ£´æ´¢µÄÏßÐÔ±íΪ(32,75,29,63,48,94,25,36,18,70,49,80)£¬¹þÏ£µØÖ·¿Õ¼äΪHT[12]£¬Èô²ÉÓóýÁôÓàÊý·¨¹¹Ôì¹þÏ£º¯ÊýºÍÀ­Á´·¨´¦Àí³åÍ»£¬ÊÔ»­³ö×îºóµÃµ½µÄ¹þÏ£±í£¬²¢Çó³öƽ¾ù²éÕÒ³¤¶È¡£ ËÄ¡¢Ëã·¨Éè¼ÆÌâ

1. ÊÔдһ¸öÅÐ±ð¸ø¶¨¶þ²æÊ÷ÊÇ·ñΪ¶þ²æÅÅÐòÊ÷µÄËã·¨£¬Éè´Ë¶þ²æÊ÷ÒÔ¶þ²æÁ´±í×÷Ϊ´æ´¢½á¹¹£¬ÇÒÊ÷ÖнáµãµÄ¹Ø¼ü×Ö¾ù²»Í¬¡£

2. ÊÔ½«ÕÛ°ë²éÕÒµÄËã·¨¸Äд³ÉµÝ¹éËã·¨¡£

ϰÌâ7²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. D 2. A 3. B 4. C 5. D 6. D 7. A 8. C 9. A 10. A 11. C 12. B 13. D ¶þ¡¢Ìî¿ÕÌâ

1. (n+1)/2, O(n) 2.

n?pici

i?13. 20.5, 41 4. ?log2(n+1)?£¬O(log2n) 5. ˳Ðò ÓÐÐò 6. 1£¬3 7. 6£¬ 19 8. (n/s+s)/2+1 9. 11 10. СÓÚ£¬´óÓÚ

11. ÓÐÐòÐòÁÐ 12. ²éÕҳɹ¦£¬×ó×ÓÊ÷£¬ÓÒ×ÓÊ÷ 13. ×ó×ÓÊ÷£¬ÓÒ×ÓÊ÷ 14. O(nlog2n) 15. 1 16. 5 17. 2 18. n/m 19. 3£¬ 2 Èý¡¢Ó¦ÓÃÌâ

1. ÕÛ°ë²éÕÒÅж¨Ê÷Èçͼ7-3Ëùʾ£¬Æ½¾ù²éÕÒ³¤¶ÈµÈÓÚ29/10¡£Í¼7-3ÖеĽáµãÓëÓÐÐò±íÖÐÔªËØµÄ¶ÔÓ¦¹ØÏµÈçϱíËùʾ¡£

5 2 8 3 6 4 9 ͼ7-3

1 7 10 -39-

1 15 2 26 3 34 4 39 5 45 6 56 7 58 8 63 9 74 10 76 2. ¶þ²æÅÅÐòÊ÷Èçͼ7-4Ëùʾ£¬Æ½¾ù²éÕÒ³¤¶ÈµÈÓÚ32/10¡£

38 25 16 30 68 54 72 52 74 90 ͼ7-4

3. H(K)=K % 13ƽ¾ù²éÕÒ³¤¶ÈΪ14/10£¬ÆäÓà½â´ðÈçÏ¡£

ÔªËØ 32 75 29 63 48 94 25 46 18 70 ³õʼ¹þÏ£µØÖ· 6 10 3 11 9 3 12 7 5 5 ×îÖÕ¹þÏ£µØÖ· 6 10 3 11 9 4 12 7 5 8

0 1 2 3 4 5 6 7 8 9 10 11 12 ¹þÏ£±í 29 94 18 32 46 70 48 75 63 25

4. H(K)=K % 11£¬¹þÏ£±íÈçͼ7-5Ëùʾ£¬Æ½¾ù²éÕÒ³¤¶È17/12¡£

ËÄ¡¢Ëã·¨Éè¼ÆÌâ

1. Éè¼ÆË¼Â·£º½øÈëÅбðË㷨֮ǰ£¬preÈ¡³õֵΪmin(СÓÚÊ÷ÖÐÈÎÒ»½áµãÖµ)£¬fail=FALSE,¼´ÈÏΪbtÊǶþ²æÅÅÐòÊ÷¡£°´ÖÐÐò±éÀúbt£¬²¢ÔÚÑØÏò¸ù½áµã£¬ÓëǰÇ÷±È½Ï£¬ÈôÄæÐò£¬ÔòfailΪTRUE,Ôòbt²»ÊǶþ²æÅÅÐòÊ÷¡£ void bisorttree(bitree bt,keytype pre, bool &fail)

{ //fail³õֵΪFALSE£¬Èô·Ç¶þ²æÐòÊ÷£¬ÔòfailÖµTRUE

ͼ7-5

0

¡Ä

-40-

if (!fail)

{ if (bt)

{ bisosrttree(bt->lchild,pre,fail); //ÅжÏ×ó×ÓÊ÷

if (bt->data_key

{ pre=bt->data_key;

bisorttree(bt->rchild,pre,fail); //ÅжÏÓÒ×ÓÊ÷ } } }

} //bisorttree

˵Ã÷£º½ÏΪֱ¹ÛµÄ·½·¨£¬¿ÉÌ×ÓÃÖÐÐò±éÀú·ÇµÝ¹éËã·¨¡£ 2. int search_bin(SeqTable st , keytype k , int low , int high) { if (low

else

{ mid=(low+high)/2;

if (k= =st.elem[mid].key) return (mid) ; //³É¹¦ else

if (k

ϰÌâ8

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬ÔÚ½øÐеÚiÌËÅÅÐòʱ£¬¼Ù¶¨ÔªËØr[i+1]µÄ²åÈëλÖÃΪr[j]£¬ÔòÐèÒªÒÆ¶¯ÔªËصĴÎÊýΪ£¨ £©¡£

A. j-i B. i-j-1 C. i-j

ÔÓ¶ÈΪ£¨ £©¡£

A. O(1) B. O(n) A. n B. n+1

C. O(n)

2

D. i-j+1

2. Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬Ôò½øÐÐÈÎÒ»ÌËÅÅÐòµÄ¹ý³ÌÖУ¬ÎªÑ°ÕÒ²åÈëλÖöøÐèÒªµÄʱ¼ä¸´

D. O(log2n) D. 2n

3. ÔÚ¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐòµÄ¹ý³ÌÖУ¬¹²ÐèÒª½øÐУ¨ £©ÌË¡£

C. n-1

2

4. ¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐòʱ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£

A. O(1) B. O(n) C. O(n) D. O(log2n)

5. ÔÚ¶Ôn¸öÔªËØ½øÐÐðÅÝÅÅÐòµÄ¹ý³ÌÖУ¬µÚÒ»ÌËÅÅÐòÖÁ¶àÐèÒª½øÐУ¨ £©¶ÔÏàÁÚÔªËØÖ®¼äµÄ½»»»¡£ A. n B. n-1 C. n+1 D. n/2

6. ÔÚ¶Ôn¸öÔªËØ½øÐÐðÅÝÅÅÐòµÄ¹ý³ÌÖУ¬×îºÃÇé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£

-41-

A. O(1) B. O(log2n) C. O(n) D. O(n) 7. ÔÚ¶Ôn¸öÔªËØ½øÐÐðÅÝÅÅÐòµÄ¹ý³ÌÖУ¬ÖÁÉÙÐèÒª£¨ £©ÌËÍê³É¡£ A. 1 B. n C. n-1

D. n/2

8. ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬Èôÿ´Î»®·ÖµÃµ½µÄ×ó¡¢ÓÒÁ½¸ö×ÓÇø¼äÖÐÔªËØµÄ¸öÊýÏàµÈ»òÖ»²îÒ»¸ö£¬ÔòÕû¸öÅÅÐò¹ý³ÌµÃµ½µÄº¬Á½¸ö»òÁ½¸öÔªËØµÄÇø¼ä¸öÊý´óÖÂΪ£¨ £©¡£ A. n B. n/2 µãÔªËØÒÆ¶¯µ½ÁÙʱ±äÁ¿µÄÒ»´ÎÔÚÄÚ¡£ A. n/2 B. n-1 A. n B. n/2 A. n B. n-1

C. n D. n+1 C. log2n D. 2n C. n/2 D. log2n

2

2

C. log2n D. 2n

9. ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬µÚÒ»´Î»®·Ö×î¶àÐèÒªÒÆ¶¯£¨ £©´ÎÔªËØ£¬°üÀ¨¿ªÊ¼°ÑÖ§

10. ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬×îºÃÇé¿öÏÂÐèÒª½øÐУ¨ £©ÌÉ¡£ 11. ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬×Çé¿öÏÂÐèÒª½øÐУ¨ £©ÌÉ¡£ 12. ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬Æ½¾ùÇé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£ A. O(1) B. O(log2n) C. O(n) D. O(nlog2n)

13. ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬×Çé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£ A. O(1) B. O(log2n) C. O(n) D. O(nlog2n)

14. ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬Æ½¾ùÇé¿öϵĿռ临ÔÓ¶ÈΪ£¨ £©¡£ A. O(1) B. O(log2n) C. O(n) D. O(nlog2n)

15. ÔÚ¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐòµÄ¹ý³ÌÖУ¬Ëã·¨µÄ¿Õ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£ A. O(1) B. O(log2n) C. O(n) D. O(nlog2n)

16. ¶ÔÏÂÁÐËĸöÐòÁнøÐпìËÙÅÅÐò£¬¸÷ÒÔµÚÒ»¸öÔªËØÎª»ù×¼½øÐеÚÒ»´Î»®·Ö£¬ÔòÔڸôλ®·Ö¹ý³ÌÖÐÐèÒªÒÆ¶¯ÔªËØ´ÎÊý×î¶àµÄÐòÁÐΪ£¨ £©¡£

A. 1, 3, 5, 7, 9 B. 9, 7, 5, 3, 1 C. 5, 3, 1, 7, 9 D. 5, 7, 9, 1, 3

17. ¼Ù¶¨¶ÔÔªËØÐòÁУ¨7, 3, 5, 9, 1, 12, 8, 15£©½øÐпìËÙÅÅÐò£¬Ôò½øÐеÚÒ»´Î»®·Öºó£¬µÃµ½µÄ×óÇø¼äÖÐÔªËØµÄ¸öÊýΪ£¨ £©¡£ A. 2 A. n

B. 3 C. 4 D. 5 B. n+1 C. n-1 D. n/2

2222

18. ÔÚ¶Ôn¸öÔªËØ½øÐмòµ¥Ñ¡ÔñÅÅÐòµÄ¹ý³ÌÖУ¬ÐèÒª½øÐУ¨ £©ÌËÑ¡ÔñºÍ½»»»¡£ 19. ÔÚ¶Ôn¸öÔªËØ½øÐжÑÅÅÐòµÄ¹ý³ÌÖУ¬Ê±¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£ A. O(1) B. O(log2n) C. O(n) D. O(nlog2n) 20. ÔÚ¶Ôn¸öÔªËØ½øÐжÑÅÅÐòµÄ¹ý³ÌÖУ¬¿Õ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£ A. O(1) B. O(log2n) C. O(n) D. O(nlog2n)

21. ¼Ù¶¨¶ÔÔªËØÐòÁУ¨7, 3, 5, 9, 1, 12£©½øÐжÑÅÅÐò£¬²¢ÇÒ²ÉÓÃС¸ù¶Ñ£¬ÔòÓɳõʼÊý¾Ý¹¹³ÉµÄ³õʼ¶ÑΪ£¨ £©¡£

A. 1, 3, 5, 7, 9, 12 C. 1, 5, 3, 7, 9, 12

B. 1, 3, 5, 9, 7, 12 D. 1, 5, 3, 9, 12, 7

2

-42-

22. ¼Ù¶¨Ò»¸ö³õʼ¶ÑΪ(1, 5, 3, 9, 12, 7, 15, 10)£¬Ôò½øÐеÚÒ»Ì˶ÑÅÅÐòºóµÃµ½µÄ½á¹ûΪ£¨ £©¡£ A. 3, 5, 7, 9, 12, 10, 15, 1 B. 3, 5, 9, 7, 12, 10, 15, 1 C. 3, 7, 5, 9, 12, 10, 15, 1 D. 3, 5, 7, 12, 9, 10, 15, 1 23. Èô¶Ôn¸öÔªËØ½øÐй鲢ÅÅÐò£¬Ôò½øÐй鲢µÄÌËÊýΪ£¨ £©¡£ A. n B. n-1 C. n/2 D. ?log2n? 24. ÈôÒ»¸öÔªËØÐòÁлù±¾ÓÐÐò£¬ÔòÑ¡Ó㨠£©·½·¨½Ï¿ì¡£ A. Ö±½Ó²åÈëÅÅÐò C. ¶ÑÅÅÐò A. Ö±½Ó²åÈëÅÅÐò C. ¶ÑÅÅÐò A. Ö±½Ó²åÈëÅÅÐò A. Ö±½Ó²åÈëÅÅÐò

B. ¼òµ¥Ñ¡ÔñÅÅÐò D. ¿ìËÙÅÅÐò B. ¼òµ¥Ñ¡ÔñÅÅÐò D. ¿ìËÙÅÅÐò

C. ¶ÑÅÅÐò C. ¶ÑÅÅÐò

D. ¿ìËÙÅÅÐò D. ¿ìËÙÅÅÐò

25. ÈôÒª´Ó1000¸öÔªËØÖеõ½10¸ö×îÐ¡ÖµÔªËØ£¬×îºÃ²ÉÓ㨠£©·½·¨¡£

26. ÈôÒª¶Ô1000¸öÔªËØÅÅÐò£¬ÒªÇó¼È¿ìÓÖÎȶ¨£¬Ôò×îºÃ²ÉÓ㨠£©·½·¨¡£

B. ¹é²¢ÅÅÐò B. ¹é²¢ÅÅÐò

27. ÈôÒª¶Ô1000¸öÔªËØÅÅÐò£¬ÒªÇó¼È¿ìÓÖ½ÚÊ¡´æ´¢¿Õ¼ä£¬Ôò×îºÃ²ÉÓ㨠£©·½·¨¡£ 28. ÔÚÆ½¾ùÇé¿öÏÂËÙ¶È×î¿ìµÄÅÅÐò·½·¨Îª£¨ £©¡£

A. ¼òµ¥Ñ¡ÔñÅÅÐò B. ¹é²¢ÅÅÐò C. ¶ÑÅÅÐò D. ¿ìËÙÅÅÐò ¶þ¡¢Ìî¿ÕÌâ

1. ÿ´Î´ÓÎÞÐò×Ó±íÖÐÈ¡³öÒ»¸öÔªËØ£¬°ÑËü²åÈëµ½ÓÐÐò×Ó±íÖеÄÊʵ±Î»Ö㬴ËÖÖÅÅÐò·½·¨½Ð×ö________ÅÅÐò£»Ã¿´Î´ÓÎÞÐò×Ó±íÖÐÌôÑ¡³öÒ»¸ö×îС»ò×î´óÔªËØ£¬°ÑËü½»»»µ½ÓÐÐò±íµÄÒ»¶Ë£¬´ËÖÖÅÅÐò·½·¨½Ð×ö________ÅÅÐò¡£

2£®Ã¿´ÎÖ±½Ó»òͨ¹ýÖ§µãÔªËØ¼ä½Ó±È½ÏÁ½¸öÔªËØ£¬Èô³öÏÖÄæÐòÅÅÁÐʱ¾Í½»»»ËüÃǵÄλÖ㬴ËÖÖÅÅÐò·½·¨½Ð×ö________ÅÅÐò£»Ã¿´ÎʹÁ½¸öÏàÁÚµÄÓÐÐò±íºÏ²¢³ÉÒ»¸öÓÐÐò±íµÄÅÅÐò·½·¨½Ð×ö________ÅÅÐò¡£ 3£®ÔÚ¼òµ¥Ñ¡ÔñÅÅÐòÖУ¬¼Ç¼±È½Ï´ÎÊýµÄʱ¼ä¸´ÔÓ¶ÈΪ________£¬¼ÇÂ¼ÒÆ¶¯´ÎÊýµÄʱ¼ä¸´ÔÓ¶ÈΪ________¡£

4. ¶Ôn¸ö¼Ç¼½øÐÐðÅÝÅÅÐòʱ£¬×îÉٵıȽϴÎÊýΪ________£¬×îÉÙµÄÌËÊýΪ_______¡£ 5. ¿ìËÙÅÅÐòÔÚÆ½¾ùÇé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪ________£¬ÔÚ×Çé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪ________¡£ 6. Èô¶ÔÒ»×é¼Ç¼(46,79,56,38,40,80,35,50,74)½øÐÐÖ±½Ó²åÈëÅÅÐò£¬µ±°ÑµÚ8¸ö¼Ç¼²åÈëµ½Ç°ÃæÒÑÅÅÐòµÄÓÐÐò±íʱ£¬ÎªÑ°ÕÒ²åÈëλÖÃÐè±È½Ï________´Î¡£

7. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,84)£¬ÔòÀûÓöÑÅÅÐò·½·¨½¨Á¢µÄ³õʼС¸ù¶ÑΪ____________________¡£

8. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,84)£¬ÔÚðÅÝÅÅÐòµÄ¹ý³ÌÖнøÐеÚÒ»ÌËÅÅÐòºóµÄ½á¹ûΪ____________________¡£

9. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,64,38,40,84,43)£¬ÔÚðÅÝÅÅÐòµÄ¹ý³ÌÖнøÐеÚÒ»ÌËÅÅÐòʱ£¬ÔªËØ79½«×îÖÕϳÁµ½ÆäºóµÚ_______¸öÔªËØµÄλÖá£

10. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,80)£¬¶ÔÆä½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬¹²ÐèÒª________ÌËÅÅÐò¡£ 11. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,80)£¬¶ÔÆä½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬º¬ÓÐÁ½¸ö»òÁ½¸öÒÔÉÏÔªËØµÄÅÅÐòÇø¼äµÄ¸öÊýΪ________¸ö¡£

-43-

12. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,25,76,38,40,80)£¬¶ÔÆä½øÐпìËÙÅÅÐòµÄµÚÒ»´Î»®·Öºó£¬ÓÒÇø¼äÄÚÔªËØµÄ¸öÊýΪ__________¡£

13. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,80)£¬¶ÔÆä½øÐпìËÙÅÅÐòµÄµÚÒ»´Î»®·ÖºóµÄ½á¹ûΪ____________________¡£

14. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,80,46,75,28,46)£¬¶ÔÆä½øÐй鲢ÅÅÐòµÄ¹ý³ÌÖУ¬µÚ¶þÌ˹鲢ºóµÄ×Ó±í¸öÊýΪ________________¡£

15. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,80,46,75,28,46)£¬¶ÔÆä½øÐй鲢ÅÅÐòµÄ¹ý³ÌÖУ¬µÚÈýÌ˹鲢ºóµÄµÚ2¸ö×Ó±íΪ________________¡£

16. ¼Ù¶¨Ò»×é¼Ç¼Ϊ(46,79,56,38,40,80,46,75,28,46)£¬¶ÔÆä½øÐй鲢ÅÅÐòµÄ¹ý³ÌÖУ¬¹©ÐèÒª__________ÌËÍê³É¡£

17. ÔÚʱ¼ä¸´ÔÓ¶ÈΪO(nlog2n)µÄËùÓÐÅÅÐò·½·¨ÖУ¬________ÅÅÐò·½·¨ÊÇÎȶ¨µÄ¡£ 18. ÔÚʱ¼ä¸´ÔÓ¶ÈΪO(n)µÄËùÓÐÅÅÐò·½·¨ÖУ¬________ÅÅÐò·½·¨ÊDz»Îȶ¨µÄ¡£ 19. ÔÚËùÓÐÅÅÐò·½·¨ÖУ¬________ÅÅÐò·½·¨²ÉÓõÄÊǶþ·Ö·¨µÄ˼Ïë¡£

20. ÔÚËùÓÐÅÅÐò·½·¨ÖУ¬________·½·¨Ê¹Êý¾ÝµÄ×éÖ¯²ÉÓõÄÊÇÍêÈ«¶þ²æÊ÷µÄ½á¹¹¡£ 21. ÔÚËùÓÐÅÅÐò·½·¨ÖУ¬________·½·¨²ÉÓõÄÊÇÁ½Á½ÓÐÐò±íºÏ²¢µÄ˼Ïë¡£ 22. ________ÅÅÐò·½·¨Ê¹¼üÖµ´óµÄ¼Ç¼Öð½¥Ï³Á£¬Ê¹¼üֵСµÄ¼Ç¼Öð½¥Éϸ¡¡£ 23. ________ÅÅÐò·½·¨Äܹ»Ã¿´ÎʹÎÞÐò±íÖеĵÚÒ»¸ö¼Ç¼²åÈëµ½ÓÐÐò±íÖС£ 24. ________ÅÅÐò·½·¨Äܹ»Ã¿´Î´ÓÎÞÐò±íÖÐ˳Ðò²éÕÒ³öÒ»¸ö×îСֵ¡£ Èý¡¢Ó¦ÓÃÌâ

1. ÒÑÖªÒ»×é¼Ç¼Ϊ(46,74,53,14,26,38,86,65,27,34)£¬¸ø³ö²ÉÓÃÖ±½Ó²åÈëÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£

2. ÒÑÖªÒ»×é¼Ç¼Ϊ(46,74,53,14,26,38,86,65,27,34)£¬¸ø³ö²ÉÓÃðÅÝÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£

3. ÒÑÖªÒ»×é¼Ç¼Ϊ(46,74,53,14,26,38,86,65,27,34)£¬¸ø³ö²ÉÓÿìËÙÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£

4. ÒÑÖªÒ»×é¼Ç¼Ϊ(46,74,53,14,26,38,86,65,27,34)£¬¸ø³ö²ÉÓüòµ¥Ñ¡ÔñÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£

5. ÒÑÖªÒ»×é¼Ç¼Ϊ(46,74,53,14,26,38,86,65,27,34)£¬¸ø³ö²ÉÓöÑÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£

6. ÒÑÖªÒ»×é¼Ç¼Ϊ(46,74,53,14,26,38,86,65,27,34)£¬¸ø³ö²ÉÓù鲢ÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£

ËÄ¡¢Ëã·¨Éè¼ÆÌâ

1. ±àдһ¸öË«ÏòÆðÅݵÄÅÅÐòËã·¨£¬¼´ÏàÁÚÁ½ÌËÏòÏà·´·½ÏòÆðÅÝ¡£ 2. ÊÔÒÔµ¥Á´±íΪ´æ´¢½á¹¹ÊµÏÖ¼òµ¥Ñ¡ÔñÅÅÐòµÄËã·¨¡£

ϰÌâ8²Î¿¼´ð°¸

Ò»¡¢µ¥ÏîÑ¡ÔñÌâ

1. D 2. B 3. C 4. C 5. B 6. D 7. A 8. B 9. D 10. C 11. B 12. D 13. C 14. D 15. A 16. D 17. B 18. C 19. D 20. A 21. B 22. A 23. D 24. A 25. B 26. B 27. C 28. D

2

-44-

¶þ¡¢Ìî¿ÕÌâ

1. ²åÈ룬ѡÔñ

2. ¿ìËÙ£¬¹é²¢

3. O(n2)£¬O(n) 4. n-1£¬1 5. O(nlog2n)£¬O(n2) 6. 4

7. (38,40,56,79,46,84) 8. (46,56,38,40,79,84) 9. 4 10. 3 11. 4 12. 4 13£®[40 38] 46 [56 79 80] 14£®3 15. [28 46] 16. 4 17. ¹é²¢ 18. Ö±½ÓÑ¡Ôñ

19. ¿ìËÙ 20. ¶ÑÅÅÐò

21. ¹é²¢ÅÅÐò 22. ðÅÝ 23. Ö±½Ó²åÈë 24. Ö±½ÓÑ¡Ôñ Èý¡¢Ó¦ÓÃÌâ 1.

(0) [46] 74 53 14 26 38 86 65 27 34 (1) [46 74] 53 14 26 38 86 65 27 34 (2) [46 53 74] 14 26 38 86 65 27 34 (3) [14 46 53 74] 26 38 86 65 27 34 (4) [14 26 46 53 74] 38 86 65 27 34 (5) [14 26 38 46 53 74] 86 65 27 34 (6) [14 26 38 46 53 74 86] 65 27 34 (7) [14 26 38 46 53 65 74 86] 27 34 (8) [14 26 27 38 46 53 65 74 86] 34 (9) [14 26 27 34 38 46 53 65 74 86] 2.

(0) [46 74 53 14 26 38 86 65 27 34] (1) [46 53 14 26 38 74 65 27 34] 86 (2) [46 14 26 38 53 65 27 34] 74 86 (3) [14 26 38 46 53 27 34] 65 74 86 (4) [14 26 38 46 27 34] 53 65 74 86 (5) [14 26 38 27 34] 46 53 65 74 86 (6) [14 26 27 34] 38 46 53 65 74 86 (7) [14 26 27 34] 38 46 53 65 74 86 3.

(0) [46 74 53 14 26 38 86 65 27 34] (1) [34 27 38 14 26] 46 [86 65 53 74] (2) [26 27 14] 34 38 46 [74 65 53] 86

-45-

(3) 14 26 27 34 38 46 [53 65] 74 86 (4) 14 26 27 34 38 46 53 65 74 86 4.

(0) [46 74 53 14 26 38 86 65 27 34] (1) 14 [74 53 46 26 38 86 65 27 34] (2) 14 26 [53 46 74 38 86 65 27 34] (3) 14 26 27 [46 74 38 86 65 53 34] (4) 14 26 27 34 [74 38 86 65 53 46] (5) 14 26 27 34 38 [74 86 65 53 46] (6) 14 26 27 34 38 46 [86 65 53 74] (7) 14 26 27 34 38 46 53 [65 86 74] (8) 14 26 27 34 38 46 53 65 [86 74] (9) 14 26 27 34 38 46 53 65 74 [86] 5. ¹¹³É³õʼ¶Ñ£¨¼´½¨¶Ñ£©µÄ¹ý³Ì£º

1 2 3 4 5 6 7 8 9 10 (0) 46 74 53 14 26 38 86 65 27 34 (1) 46 74 53 14 26 38 86 65 27 34 (2) 46 74 53 14 26 38 86 65 27 34 (3) 46 74 38 14 26 53 86 65 27 34 (4) 46 14 38 27 26 53 86 65 74 34 (5) 14 26 38 27 34 53 86 65 74 46 ½øÐжÑÅÅÐòµÄ¹ý³Ì£º

(0) 14 26 38 27 34 53 86 65 74 46 (1) 26 27 38 46 34 53 86 65 74 [14] (2) 27 34 38 46 74 53 86 65 [26 14] (3) 34 46 38 65 74 53 86 [27 26 14] (4) 38 46 53 65 74 86 [34 27 26 14] (5) 46 65 53 86 74 [38 34 27 26 14] (6) 53 65 74 86 [46 38 34 27 26 14] (7) 65 86 74 [53 46 38 34 27 26 14] (8) 74 86 [65 53 46 38 34 27 26 14] (9) 86 [74 65 53 46 38 34 27 26 14] 6.

(0) [46] [74] [53] [14] [26] [38] [86] [65] [27] [34] (1) [46 74] [14 53] [26 38] [65 86] [27 34] (2) [14 46 53 74] [26 38 65 86] [27 34] (3) [14 26 38 46 53 65 74 86] [27 34] (3) [14 26 27 34 38 46 53 65 74 86]

-46-

ËÄ¡¢Ëã·¨Éè¼ÆÌâ 1.

void Bubble_Sort2(int a[ ],int n) //ÏàÁÚÁ½ÌËÊÇ·´·½ÏòÆðÅݵÄðÅÝÅÅÐòËã·¨ { low=0;high=n-1; //ðÅݵÄÉÏϽç change=1;

while (low

for(i=low;ia[i+1]) { a[i]<->a[i+1]; change=1; }

high--; //ÐÞ¸ÄÉϽç

for (i=high;i>low;i--) //´ÓÏÂÏòÉÏÆðÅÝ if (a[i]a[i-1]; change=1; }

low++; //ÐÞ¸ÄϽç }//while }//Bubble_Sort2 2.

void LinkList_Select_Sort(LinkList &L) //µ¥Á´±íÉϵļòµ¥Ñ¡ÔñÅÅÐòËã·¨ { for (p=L;p->next->next;p=p->next) { q=p->next; x=q->data;

for (r=q,s=q;r->next;r=r->next) //ÔÚqºóÃæÑ°ÕÒÔªËØÖµ×îСµÄ½áµã if (r->next->datanext->data; s=r; }

if (s!=q) //ÕÒµ½ÁËÖµ±Èq->data¸üСµÄ×îС½áµãs->next { p->next=s->next; s->next=q; t=q->next; q->next=p->next->next; p->next->next=t;

} //½»»»qºÍs->nextÁ½¸ö½áµã }//for

}//LinkList_Select_Sort

-47-