¡¶Ò£¸ÐÔÀíÓëÓ¦ÓÿγÌÉè¼Æ¡·
ʵϰ±¨¸æ
ѧ Ôº: Ò£¸ÐÐÅÏ¢¹¤³ÌѧԺ
°à ¼¶:
ѧ ºÅ:
ÐÕ Ãû:
ʵϰµØµã: 5-325»ú·¿
Ö¸µ¼½Ìʦ: ʯÎÄÐù
2016Äê 6 ÔÂ 16 ÈÕ
»ùÓÚ¶àÏîʽµÄÒ£¸ÐͼÏñ¼¸ºÎ¾ÀÕý
Õª Òª£º ±¾´Îʵϰ´óÖ·ÖΪÁ½¸ö²¿·Ö£¬µÚÒ»²¿·ÖÊÇͨ¹ýµ÷ÓÃOpenCVº¯ÊýʵÏÖÒ£¸ÐͼÏñµÄ»ù±¾´¦Àí£¬ÎÒÃÇС×éÑ¡ÔñµÄÌâÄ¿ÊÇרÌâ¶þ£¬¶Ô²ÊɫͼÏñ½øÐÐËõ·Å¡¢ÐýתµÈ¼¸ºÎ²Ù×÷¡£µÚ¶þ²¿·ÖÊÇ×ÔÖ÷±à³ÌʵÏÖÒ£¸ÐͼÏñ´¦Àí£¬ÎÒÃÇС×é³éµ½µÄÊÇ»ùÓÚ¶àÏîʽµÄÒ£¸ÐͼÏñ¼¸ºÎ¾ÀÕý£¬°üÀ¨¾ÀÕý¶àÏîʽϵÊýµÄ½âË㣬¾ÀÕý±ä»»º¯ÊýµÄ½¨Á¢£¬×ø±êת»»ºÍ»Ò¶ÈÖØ²ÉÑùµÄËã·¨ÔÀíÓë±à³ÌʵÏÖ¡£±¾ÎÄÖ÷Òª½éÉÜʵÏÖµÚ¶þ¸öÈÎÎñµÄÖ÷ÒªÔÀí£¬¾ßÌå²½Ö裬ÊÔÑé½á¹ûչʾÒÔ¼°Óöµ½µÄÎÊÌâ·ÖÎöºÍÐĵÃ×ܽᡣ
¹Ø¼ü´Ê£º¶àÏîʽ£¬¼¸ºÎ¾ÀÕý£¬ÖزÉÑù
1 ÔÀí½éÉÜ
1.1 ÀûÓõØÃæÒÑÖª¿ØÖƵãÇó½â¶àÏîʽϵÊý
Ò»°ã¶àÏîʽ¾ÀÕýµÄ±ä»»¹«Ê½ÈçÏ£º
ÉÏʽÖУ¬x£¬yΪÏñËØµÄÔʼͼÏñ×ø±ê£¬
X£¬YΪͬÃûÏñËØµãµÄµØÃæ×ø±ê¡£
ÀûÓõØÃæÒÑÖª¿ØÖƵãÇó½â¶àÏîʽϵÊýµÄ¾ßÌå²½ÖèÈçÏ£º 1.1.1 ÁгöÎó²î·½³Ìʽ
1.1.2 ¹¹³É·¨·½³Ì
1.1.3¼ÆËã¶àÏîʽϵÊý
1.1.4 ¾«¶ÈÅж¨
ÆäÖУ¬nΪ¿ØÖƵãµÄ¸öÊý£¬NΪ¾ÀÕýϵÊýµÄ¸öÊý£¬n-N Ϊ¶àÓà¹Û²âÊý¡£ ÆÀ¶¨¾«¶ÈµÄ²½ÖèÊÇÉ趨һ¸öÏÞ²î¦Å£¬×÷Ϊ¾«¶ÈÆÀ¶¨µÄ±ê×¼£¬Èç¹ûͨ¹ýÉÏʽ¼ÆËã³öµÄ¦Ä>¦Å,Ôò˵Ã÷¼ÆËã½á¹û´æÔÚÒ»¶¨³Ì¶ÈµÄ´Ö²î£¬¾«¶È³¬ÏÞ½á¹û²»¿ÉÈ¡¡£²¢¶Ôÿһ¸ö¿ØÖƵãÉÏµÄÆ½²î²ÐÓàÎó²îVx£¬Vy½øÐбȽϼì²é£¬½«×î´óÕßÊÓΪ´Ö²î²¢½«ÆäÌÞ³ý»òÖØÐÂÑ¡µã½øÐÐÆ½²î£¬Ö±ÖÁÂú×ã¦Ä<¦ÅµÄ¾«¶ÈÆÀ¶¨±ê׼Ϊֹ¡£
1.2 Ò£¸ÐͼÏñµÄ¼¸ºÎ¾ÀÕý±ä»»
ÔÚ½øÐÐÒ£¸ÐͼÏñµÄ¼¸ºÎ¾ÀÕý±ä»»Ö®Ç°£¬ÐèÒªÏÈÔÚ¼ÆËã»úÖÐΪÊä³öͼÏñ¿ª±ÙÒ»¶¨µÄ´æ´¢¿Õ¼ä£¬¼´È·¶¨Êä³öͼÏñµÄ¿Õ¼ä±ß½çÒÔ¼°µØÍ¼µØÃæ×ø±êÖµ¡£
1.2.1 °ÑÔʼͼÏñµÄËĸö½Çµã×ø±ê°´ÕÕ¾ÀÕý±ä»»º¯Êý¼ÆËã³öͶӰµ½µØÍ¼×ø±êϵͳÖеÄ×ø±êÖµ£º
(X1,Y1), (X2,Y2), (X3,Y3), (X4,Y4)¡£
1.2.2 ¶ÔÉÏÊöËĸö×ø±ê°´Õպᡢ×Ý×ø±ê·Ö±ð·Ö×é²¢Çó³ö×î´ó×îСֵ£¬ËùµÃ½á¹û¼´Îª¾ÀÕýºóͼÏñµÄ±ß½çµÄµØÍ¼×ø±êϵµÄÖµ¡£
Xmin = min (min (X1,X2),min (X3,X4)) Xmax= max (max (X1,X2), max (X3,X4)) Ymin = min (min (Y1,Y2),min (Y3,Y4)) Ymax = max (max (y1,Xy2), max (y3,y4))
1.2.3 ÔÚÀûÓüÆËã»ú½øÐоÀÕýºóͼÏñµÄ´æ´¢Ö®Ç°£¬ÐèÒª°ÑÉÏÊö±ß½ç·¶Î§×ª»»Îª¼ÆËã»úÖеĴ¢´æÊý×é¿Õ¼ä£¬½«±ß½ç·¶Î§»®·ÖΪ¸ñÍø£¬Ã¿Ò»¸ö¸ñÍøµã´ú±íÒ»¸öÏñËØÖµ£¬Òò´ËÐèÒª¸ù¾Ý¾«¶ÈÒªÇó¶¨ÒåÊä³öͼÏñµÄµØÃæ³ß´ç¡£ÕâÀïµÄµØÃæµã³ß´ç¼´Í¼Ïñ·Ö±æÂÊΪ30Ãס£ËæºóÀûÓøø³öµÄ×óÉϽDZ߽çµãΪÊä³öͼÏñµÄ×ø±êԵ㣬²¢Àû
ÓÃÆäËûµÄ×ø±êÐÅÏ¢¶¨ÒåͼÏñµÄÐÐÊýºÍÁÐÊý¡£×îºó¼ÆËãµÃµ½µÄͼÏñ×ܵÄÐÐÁÐÊýÈçÏÂËùʾ£º
Nrows = (Ymax - Ymin)/30 + 1; Ncols = (Xmax - Xmin)/30 + 1¡£
1.2.4 ͼÏñ¾ÀÕý±ä»»º¯ÊýµÄÄ¿µÄÊÇÈ·¶¨ÔʼͼÏñµÄ×ø±êÖµÓëµØÃæ×ø±êÖµÖ®¼äµÄ±ä»»¹ØÏµ£¬ÎªÁ˽øÒ»²½±í´ïÔʼͼÏñÓëÊä³öͼÏñÖ®¼äµÄ¶ÔÓ¦¹ØÏµ£¬ÎÒÃÇÐèÒª°ÑµØÃæ×ø±ê½øÐÐת»»£¬Ê×ÏÈת»»ÎªÊä³öͼÏñ×ø±ê£¬×ª»»¹«Ê½ÈçÏ£º
ÔÚÊä³öͼÏñµÄ±ß½ç×ø±êÈ·¶¨Ö®ºó£¬¾Í¿ÉÒÔ½¨Á¢×ø±êϵͳ²¢°´ÕÕ¾ÀÕý±ä»»º¯Êý°ÑÊäÈëͼÏñµÄÿ¸öÏñËØÖð¸ö±ä»»µ½Êä³öͼÏñ¿Õ¼äÖУ¬ÕâÒ»²½ÓÐÁ½Öֿɹ©Ñ¡ÔñµÄ¾ÀÕý·½°¸£¬Ö±½Ó·¨ºÍ¼ä½Ó·¨¡£Ö±½Ó·¨µÄÔÀíÊǶÔÓ¦ÊäÈëͼÏñµÄÿһ¸öÏñËØ°´Õձ任º¯ÊýÕÒµ½ÆäÔÚÊä³öͼÏñÉϵĶÔӦλÖ㬼ä½Ó·¨µÄÔÀíÊǶÔÓÚÊä³öͼÏñµÄÿһ¸öÏñËØµã£¬·´ËãµÃµ½Æä¶ÔÓ¦µÄÊäÈëͼÏñµÄÏñËØ¡£
1.3 Êý×ÖͼÏñÁÁ¶ÈÖµÖØ²ÉÑù
1.3.1 ×îÁÚ½üÏñÔª·¨
×îÁÚ½üÏñÔª²ÉÑù·¢µÄʵÖÊÊDzÉÈ¡¾àÀë²ÉÑùµã×î½üµÄÏñËØµÄÁÁ¶ÈÖµ×÷ÎªÖØ²ÉÑùµÄÁÁ¶ÈÖµ¡£
ÕâÖÖ·½·¨µÄ²ÉÑù·½·¨×î¼òµ¥£¬·øÉä±£Õæ¶È±È½ÏºÃ£¬µ«ÊÇÕâÖÖ·½·¨½«»áÔì³ÉÏñËØµãÔÚÒ»¸öÏñËØ·¶Î§Ö®ÄÚµÄÎ»ÒÆ£¬ÓëË«ÏßÐÔÄڲ巨¡¢Èý´Î¾í»ý·¨Ïà±È£¬¼¸ºÎ¾«¶È½Ï²î¡£
1.3.2 Ë«ÏßÐÔÄڲ巨
ÕâÖÖ·½·¨µÄÔÀí¿ÉÒÔÓÃÏÂͼËùʾµÄÒ»¸öÈý½ÇÐÎÏßÐÔº¯Êý±í´ï£º
ͼ1 Ë«ÏßÐÔÄڲ巨ÔÀíͼ