spss练习作业具体步骤要点 下载本文

(5)检验学生对专业的满意程度是否为离散的均匀分布

第一步,采用卡方分布进行检验,H0:学生对专业的满意程度服从离散的均匀分布 H1:学生对专业的满意程度不服从离散的均匀分布 第二步,通过SPSS软件计算结果表20、21

表20 不同专业满意度频数与期望频数 非常不满意 不满意 基本满意 比较满意 非常满意 总数 观察数 4 17 45 52 30 148 期望数 29.6 29.6 29.6 29.6 29.6 残差 -25.6 -12.6 15.4 22.4 .4

表21 卡方分布检验计算结果和相应的p值 卡方 df 渐近显著性 对专业的满意度 52.473a 4 0.000 第三步,作出结论,因为p=0.000,小于0.01,可以拒绝原假设,接受备择假设认为学生对专业的满意程度不服从离散的均匀分布。

7、回归分析。

(1)计算上月工资与平均学分绩点的相关系数并作假设检验。 解:第一步,假设如下:H0:??0 H1:??0

第二步,通过SPSS计算,见表22

表22 上月工资与平均学分绩点的相关性 平均学分绩点—去年同月工资 Pearson 相关性 .763** 显著性(双侧) 0.000 N 148 第三步,根据计算相关系数为0.763,P=0.000<0.01,所以可以拒绝原假设,在0.01水平上二者显著相关。

(2)以上月工资为因变量,平均学分绩点为自变量做回归分析,分析模型的拟合效果和假设检验的结果。 (第一次抽样无法做回归分析,需要重新抽样)

解:第一步,假设1,H0:回归模型无意义,H1:回归模型有意义 假设2,Ho;常量为 H1:常量不等于0

假设3,Ho:平均学分绩点的系数为0,H1:平均学分绩点的系数不等于0 第二步,通过SPSS分析,见表23、24、25

表23 模型汇总

模型 1 R .764a R 方 .584 调整 R 方 标准 估计的误差 .581 346.581 Durbin-Watson 2.163

表24 回归模型 模型 1 回归 残差 总计 平方和 2.273E7 1.622E7 3.894E7 df 1 135 136

表25模型回归系数表 模型 1 (常量) 平均学分绩点

-661.720 1177.971 B 269.159 85.636 t -2.458 13.756 Sig. .015 .000 均方 2.273E7 120118.458 F 189.216 Sig. .000a

图6

图7

图8

说明:

图6 为残差的直方图,图中残差的分布基本均匀

图7 为残差的正态P-P概率图,图中散点基本呈直线趋势,且并未发现异常点

图8 残差是否有随标准化预测值增大而改变的趋势。从图中可以看出分布基本均匀,可以认为残差的方差是齐性的

第三步,作出结论,从表23中可以看出此表为拟合模型的拟合优度的情况,其中R方为0.584,Durbin-Watson统计量为2.163,比较接近2,可以认为残差之间相互独立。从表24中可以到

F=189.216 .P=0.000,可以认为这个回归模型是有统计意义的。从表25中可以得到模型的常量为-661.720,平均学分点的系数为1177.971,通过以上综合分析,最后得出的模型为:

月工资=-661.720+1177.971*平均学分绩点

(3)以上月工资为因变量,平均学分绩点和性别为自变量做回归分析,分析模型的拟合效果和假设检验的结果。

解:第一步,假设1,H0:回归模型无意义, H1:回归模型有意义 假设2,Ho;常量为 H1:常量不等于0

假设3,Ho:平均学分绩点的系数为0,H1:平均学分绩点的系数不等于0 第二步,通过SPSS计算可以得出表26、27、28、29,

表26 模型汇总c 模型 1 R .914b R 方 .835 调整 R 方 标准 估计的误差 .832 219.020 Durbin-Watson 1.887 表27 回归模型 模型 1 回归 残差 总计 平方和 3.252E7 6427926.055 3.894E7 df 2 134 136 均方 1.626E7 47969.597 F 338.928 Sig. .000 表28 模型回归系数 模型 1 (常量) 平均学分绩点 性别 -137.317 1098.030 -537.566 B 174.010 54.406 37.633 t -.789 20.182 -14.285 Sig. .431 .000 .000 表29共线性诊断a 模型 维数 1 1 2 3 特征值 2.616 .378 .006 条件索引 1.000 2.629 21.027

第三步,作出结论,从表26中可以看出此表为拟合模型的拟合优度的情况,其中调整R方为0.835,Durbin-Watson统计量为1.887,比较接近2,可以认为残差之间相互独立。从表24中可以到F=338.928,.P=0.000,可以认为这个回归模型是有统计意义的。从表25中可以得到模型的常量为-137.317,P=0.431>0.05,所以在统计学中,没有意义。平均学分点的系数为1098.030,性别的系数为-537.566,通过以上综合分析,最后得出的模型为:

月工资=-537.566*性别+1098.030*平均学分绩点