四川成都市2018年中考数学试卷及解析 下载本文

利用边角关系得出BN,CN的长进而得出答案. 【解答】解:延长NF与DC交于点H, ∵∠ADF=90°, ∴∠A+∠FDH=90°,

∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN, ∴∠A=∠DFH, ∴∠FDH+∠DFH=90°, ∴NH⊥DC,

设DM=4k,DE=3k,EM=5k, ∴AD=9k=DC,DF=6k, ∵tanA=tan∠DFH=, 则sin∠DFH=, ∴DH=DF=∴CH=9k﹣

k, k=

k, =,

∵cosC=cosA=∴CN=CH=7k, ∴BN=2k, ∴

=.

【点评】此题主要考查了翻折变换的性质以及解直角三角形,正确表示出CN的长是解题关键.

25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),

将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为

【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.

【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示. 联立直线AB及双曲线解析式成方程组,

解得:,, ,﹣

),点B的坐标为(

).

∴点A的坐标为(﹣∵PQ=6,

∴OP=3,点P的坐标为(﹣,).

根据图形的对称性可知:AB=OO′=PP′, ∴点P′的坐标为(﹣

+2

+2

).

又∵点P′在双曲线y=上,

∴(﹣+2)?(+2)=k,

解得:k=. 故答案为:.

【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.

二、解答题(本大题共3小题,共30分)

26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元. (1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;

(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?

【分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即

可.

(2)设甲种花卉种植为 a m2,则乙种花卉种植(12000﹣a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少. 【解答】解:(1)y=

(2)设甲种花卉种植为 a m2,则乙种花卉种植(12000﹣a)m2. ∴

∴200≤a≤800

当200≤a<300时,W1=130a+100(1200﹣a)=30a+12000. 当a=200 时.Wmin=126000 元

当300≤a≤800时,W2=80a+15000+100(1200﹣a)=135000﹣20a. 当a=800时,Wmin=119000 元 ∵119000<126000

∴当a=800时,总费用最少,最少总费用为119000元. 此时乙种花卉种植面积为1200﹣800=400m2.

答:应该分配甲、乙两种花卉的种植面积分别是800m2 和400m2,才能使种植总费用最少,最少总费用为119000元.

【点评】本题是看图写函数解析式并利用解析式的题目,考查分段函数的表达和分类讨论的数学思想.

27.(10分)在Rt△ABC中,∠ABC=90°,AB=

,AC=2,过点B作直线m∥AC,

将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.

(1)如图1,当P与A′重合时,求∠ACA′的度数;

(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;

(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.