达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)
23.(7分)已知反比例函数y=(1)若点P1(
(k为常数).
,y1)和点P2(﹣,y2)是该反比例函数图象上的两点,试利用反比
例函数的性质比较y1和y2的大小;
(2)设点P(m,n)(m>0)是其图象上的一点,过点P作PM⊥x轴于点M.若tan∠POM=2,PO=
(O为坐标原点),求k的值,并直接写出不等式kx+
>0的解集.
的中点,AC
24.(9分)如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧与BD交于点E.
(1)求证:DC2=CE?AC;
(2)若AE=2,EC=1,求证:△AOD是正三角形;
(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH的面积.
25.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.
(1)求该抛物线的解析式;
(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(﹣,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围. (3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.
2017年内蒙古呼和浩特市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)(2017?呼和浩特)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为( ) A.﹣5℃ B.5℃ C.10℃
D.15℃
【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.
【解答】解:5﹣(﹣10), =5+10, =15(℃). 故选D.
【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键. 2.(3分)(2017?呼和浩特)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为( ) A.0.96×107km2
B.960×104km2
C.9.6×106km2 D.9.6×105km2
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【解答】解:将9600000用科学记数法表示为:9.6×106. 故选:C.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(3分)(2017?呼和浩特)图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( )
A.(1) B.(2) C.(3) D.(4)
【分析】轴对称是沿着某条直线翻转得到新图形,据此判断出通过轴对称得到的是哪个图形即可.
【解答】解:∵轴对称是沿着某条直线翻转得到新图形, ∴通过轴对称得到的是(1). 故选:A.
【点评】此题主要考查了轴对称图形的性质和应用,要熟练掌握,解答此题的关键是要明确:轴对称是沿着某条直线翻转得到新图形,观察时要紧扣图形变换特点,进行分析判断. 4.(3分)(2017?呼和浩特)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )
A.2010年至2014年间工业生产总值逐年增加 B.2014年的工业生产总值比前一年增加了40亿元 C.2012年与2013年每一年与前一年比,其增长额相同
D.从2011年至2014年,每一年与前一年比,2014年的增长率最大 【分析】根据题意结合折线统计图确定正确的选项即可.
【解答】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意; B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意; C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;
D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意; 故选:D.
【点评】本题考查了折线统计图,计算增长率是解题关键.
5.(3分)(2017?呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为( ) A.2
B.0
C.1
D.2或0
【分析】设方程的两根为x1,x2,根据根与系数的关系得a2﹣2a=0,解得a=0或a=2,然后利用判别式的意义确定a的取值. 【解答】解:设方程的两根为x1,x2, 根据题意得x1+x2=0,
所以a2﹣2a=0,解得a=0或a=2,
当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去, 所以a的值为0. 故选B.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.
6.(3分)(2017?呼和浩特)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( ) A.第一象限
B.第二象限
C.第三象限
D.第四象限
【分析】根据y随x的增大而减小得:k<0,又kb>0,则b<0.再根据k,b的符号判断直线所经过的象限.
【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0, 故此函数的图象经过第二、三、四象限, 即不经过第一象限. 故选A.
【点评】能够根据k,b的符号正确判断直线所经过的象限.
7.(3分)(2017?呼和浩特)如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为( )
A.26π B.13π C. D.