taoti.tl100.com 你的首选资源互助社区
(1) 求椭圆的方程;
(2) 设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(?a,0),点Q(0,y0)在线段AB????????的垂直平分线上,且QA?QB?4,求y0的值
【解析】本小题主要考察椭圆的标准方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算和推理能力,满分12分 (1)解:由e?由题意可知,
c322222,得3a?4c,再由c?a?b,得a?2b ?a21?2a?2b?4,即ab?2 2?a?2b解方程组? 得 a=2,b=1
ab?2?x2?y2?1 所以椭圆的方程为4(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),
?y?k(x?2)?于是A,B两点的坐标满足方程组?x2 2??y?1?4由方程组消去Y并整理,得(1?4k2)x2?16k2x?(16k2?4)?0
16k2?4,得 由?2x1?21?4k2?8k24kx1?,从而y?, 11?4k21?4k28k22k,) 设线段AB是中点为M,则M的坐标为(?221?4k1?4k以下分两种情况:
(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是
QA?(?2,?y0),QB?(2,?y0)由QA?QB=4,得y0=?22 ????2k18k2?(x?) (2)当K?0时,线段AB的垂直平分线方程为Y?1?4k2k1?4k2
taoti.tl100.com 你的首选资源互助社区
令x=0,解得y0??6k 21?4k?由QA?(?2,?y0),QB?(x1,y1?y0)
?2(2?8k2)6k4k6kQA?QB??2x1?y0(y1?y0)=?(?) 22221?4k1?4k1?4k1?4k??4(16k4?15k2?1)=?4
(1?4k2)2整理得7k?2,故k??214214 所以y0=?75214 5综上y0=?22或y0=?
(2010广东理数) 21.(本小题满分14分)
设A(x1,y1),B(x2,y2)是平面直角坐标系xOy上的两点,先定义由点A到点B的一种折线距离p(A,B)为P(A,B)?|x2?x1|?|y2?y1|.
当且仅当(x?x1)(x2?x)?0,(y?y1)(y2?y)?0时等号成立,即A,B,C三点共线时等号成立. (2)当点C(x, y) 同时满足①P(A,C)+P(C,B)= P(A,B),②P(A,C)= P(C,B)时,点C是线段AB的中
taoti.tl100.com 你的首选资源互助社区
点. x?x1?x2y?y2x?x2y1?y2,y?1,)满足条件。 ,即存在点C(12222(2010广东理数)20.(本小题满分为14分)
x2?y2?1的左、 一条双曲线右顶点分别为A1,A2,点P(x1,y1),Q(x1,?y1)是双曲线上不同的两个动点。 2 (1)求直线A1P与A2Q交点的轨迹E的方程式;
(2)若过点H(0, h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1?l2 ,求h的值。
12x2?y2?1。 故y??(x?2),即
222(2)设l1:y?kx?h,则由l1?l2知,l2:y??1x?h。 kx2?y2?1得 将l1:y?kx?h代入2x2?(kx?h)2?1,即(1?2k2)x2?4khx?2h2?2?0, 2由l1与E只有一个交点知,??16kh?4(1?2k)(2h?2)?0,即
22221?2k2?h2。
1?2?同理,由l2与E只有一个交点知,
即h?3。
(2010广东文数)21.(本小题满分14分)
已知曲线Cn:y?nx2,点Pn(xn,yn)(xn?0,yn?0)是曲线Cn上的点(n?1,2,...),
1122222?h?k2,h,消去得即k?1,从而h?1?2k?3,22kk
taoti.tl100.com 你的首选资源互助社区