小学奥数36个精彩讲座总汇(下) - 图文 下载本文

在右上图中除了a出现5次,其他数字均只出现了1次,并且每个数字都出现了,于是有5S=(1+2+3+?11)+4a=66+4a. 综合以上两式??4S?66?a(1),

?5S?66?4a(2)①×5-②×4得66-11a=0,所以a=6,则S=18.

考虑到含有*的五条线,有4*+(1+2+3+4+?+11)-t=5S=90.即4*-t=24,由t是1~11间的数且t≠*,可知*=7,而每行相等的和S为18.

表述2:如下图所示,在每个圆圈内标上字母,带有*的圆圈标为x,

首先考虑以下四条直线:(h、f、a),(i、g、a),(x、d、b),(j、e、c),除了标有a的圆圈外,其余每个圆圈都出现了一次,而标有a的圆圈出现了两次,设每条直线上数字之和为S,则有: (1+11)×11÷2+a=4S,即66+a=4S.

再考虑以下五条直线:(h、f、a),(i、g、a),(j、x、a),(e、d、a),(c、b、a),同理我们可得到66+4a=5S.

?66?a?4S综合两个等式?,可得a为6,每条直线上和S为18.

66?4a?5S?最后考虑含x的五条直线:(x、h),(x、g、f),(j、x、a),(x、d、b),(i、x、c).其中除了x出现

了5次,e没有出现,其他数字均只出现了一次,于是可以得到:

66+4x-e=5S=90,即4x-e=24,由e是1—11间的数且e≠x可知x=7.

即每行相等的和S为18,*所填的数为7.

7.一个六位数,把个位数字移到最前面便得到一个新的六位数,再将这个六位数的个位数字移到最前面又得到一个新的六位数,如此共进行5次所得的新数连同原来的六位数共6个数称为一组循环数.已知一个六位数所生成的一组循环数恰巧分别为此数的l倍,2倍,3倍,4倍,5倍,6倍,求这个六位数.

Page 5 of 82

........12345【分析与解】方法一:=0.142857,=0.285714,=0.428571,=0.571428,=

77777....60.714285,=0.857142。

7 对应有142857,285714,428571,571428,714285,857142,它们依次是142857的1、2、3、4、5、6倍.

且只用了1、4、2、8、5、7这6个数字,满足题意. 所以这个六位数为142857.

方法二:首先可以确定最小的六位数的首位为1,不然2*****的6倍就不是六位数,于是不妨设这个六位数为1abcde,那么6个六位数中必定存在一个数为abcde1.

而个位数字1,只能由1×1,3×7或9×9得到.但是abcde1只能对应为1abcde×(2—6),所以只能是1abcde×3得到.即abcde1=1abcde×3.

于是,我们不难递推出d为5,c为8,b为2,a为4,所以这个六位数为142857.

方法三:部分同方法二,abcde1=1abcde×3.

那么有abcde×10+l=(100000+abcde)×3,解得abcde=42857. 所以这个六位数为142857.

Page 6 of 82

15讲计数综合1

内容概述

将关键的已知数据看作变量,得到一类结构相同的计数问题,通过建立这些问题的结果所构成数列的递推关系,逐步地求得原问题的答案.与分数、几何等相关联的计数综合题.

典型问题

1.一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?

【分析与解】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.

同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分. 第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.

2.一个楼梯共有10级台阶,规定每步可以迈1级台阶或2级台阶,最多可以迈3级台阶.从地面到最上面1级台阶,一共可以有多少种不同的走法?

【分析与解】 我们知道最后一步可以迈1级台阶、2级台阶或3级台阶,也就是说可以从倒数第1、2或3级台阶直接迈入最后一级台阶. 即最后一级台阶的走法等于倒数第1、2和3级台阶的走法和.而倒数第l级台阶的走法等于倒数第2、3和4级台阶的走法和,?? 如果将1、2、3??级台阶的走法依次排成一个数列,那么从第4项开始,每一项等于前3项的和.

有1,2,3级台阶的走法有1,2,4种走法,所以4,5,6,7,8,9,10级台阶的走法有7,13,24,44,81,149,274种走法.

3.一个圆上有12个点A1,A2,A3,?,A11,A12.以它们为顶点连三角形,使每个点恰好是一个三角形的顶点,且各个三角形的边都不相交.问共有多少种不同的连法?

【分析与解】我们采用递推的方法.

I如果圆上只有3个点,那么只有一种连法.

Page 7 of 82

Ⅱ如果圆上有6个点,除A1点所在三角形的三顶点外,剩下的三个点一定只能在A1所在三角形的一条边所对应的圆弧上,表1给出这时有可能的连法.

Ⅲ如果圆上有9个点,考虑A1所在的三角形.此时,其余的6个点可能分布在: ①A1所在三角形的一个边所对的弧上;

②也可能三个点在一个边所对应的弧上,另三个点在另一边所对的弧上. 在表2中用“+”号表示它们分布在不同的边所对的弧. 如果是情形①,则由Ⅱ,这六个点有三种连法;

如果是情形②,则由①,每三个点都只能有一种连法.

共有12种连法.

Ⅳ最后考虑圆周上有12个点.同样考虑A1所在三角形,剩下9个点的分布有三种可能: ①9个点都在同一段弧上:

②有6个点是在一段弧上,另三点在另一段弧上;

③每三个点在A1所在三角形的一条边对应的弧上.得到表3.

共有12×3+3×6+1=55种.

Page 8 of 82