初二数学期中压轴题 下载本文

2017年10月31日429****1510的初中数学组卷

一.选择题(共2小题)

1.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为( ) A.(

2.钓鱼岛和中国台湾属于同一地质构造,按照国际法钓鱼岛属于中国.钓鱼岛周围海域石油资源丰富,地域战略十分重要.图中A为台湾基隆,B为钓鱼岛,单位长度为38千米,那么A,B相距( ) A.190千米

B.266千米

C.101千米

D.950千米

)2013 B.(

)2014 C.(

)2013

D.(

)2014

二.解答题(共11小题)

3.在由6个大小相同的小正方形组成的方格中:

(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;

(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).

4.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.

某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.

作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作

第1页(共15页)

为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.

5.在Rt△ABC中,∠C=90°,D是BC边上的一点,BD=AD=8,∠ADC=60°, 求△ABC的面积.

6.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.

7.在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.

(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.

8.如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?

第2页(共15页)

9.有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A点望湖中小岛M,测得∠MAN=30°,航行100米到达B点时,测得∠MBN=45°,你能算出A点与湖中小岛M的距离吗?

10.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元? 11.附加题:

如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以O.25cm/s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.

12.如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数. 13.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处; (1)求证:B′E=BF;

(2)设AE=a,AB=b,BF=c,

试猜想a,b,c之间的一种关系,并给予证明.

第3页(共15页)

2017年10月31日429****1510的初中数学组卷

参考答案与试题解析

一.选择题(共2小题)

1.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为( )

A.(

)2013 B.()2014 C.()2013

D.(

)2014

【分析】根据等腰直角三角形的性质结合三角形的面积公式可得出部分Sn的值,根据面积的变化即可找出变化规律“Sn=4×【解答】解:观察,发现:S1=22=4,S2=

=

∴Sn=∴S2016=4×故选C.

【点评】本题考查了等腰直角三角形的性质、三角形的面积、正方形的面积以及规律型中数字的变化类,根据面积的变化找出变化规律“Sn=4×的关键.

2.钓鱼岛和中国台湾属于同一地质构造,按照国际法钓鱼岛属于中国.钓鱼岛周围海域石油资源丰富,地域战略十分重要.图中A为台湾基隆,B为钓鱼岛,单位长度为38千米,那么A,B相距( )

”是解题

,…,

=4×=

. ,

”,依此规律即可解决问题. =2,S3=

=1,S4=

第4页(共15页)