S±í£½¦ÐR2£«2¦ÐRl£½¦ÐR2£«2¦Ð¡¤£¬
R54¦Ð
ËùÒÔS¡ä±í£½2¦ÐR£2.
27
RÁîS¡ä±í£½0£¬µÃR£½3£¬Ôòµ±R£½3ʱ£¬S±í×îС. ´ð°¸ 3
12.¶¨ÒåÓòΪRµÄ¿Éµ¼º¯Êýy£½f(x)µÄµ¼º¯ÊýΪf¡ä(x)£¬Âú×ãf(x)>f¡ä(x)£¬ÇÒf(0)£½1£¬Ôò²»µÈʽ½â¼¯Îª________.
f£¨x£©
e
x<1µÄ
´ð°¸ {x|x>0} 13.Èôº¯Êýf(x)£½½âÎö f¡ä(x)£½
ax£ae
x£«1(a<0)ûÓÐÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª________.
2xaex££¨ax£a£©ex£a£¨x£2£©
e
£½e
x(a<0).
µ±x<2ʱ£¬f¡ä(x)<0£»µ±x>2ʱ£¬f¡ä(x)>0£¬ ¡àµ±x£½2ʱ£¬f(x)Óм«Ð¡Öµf(2)£½2£«1.
e
Èôʹº¯Êýf(x)ûÓÐÁãµã£¬µ±ÇÒ½öµ±f(2)£½2£«1>0£¬
e½âÖ®µÃa>£e£¬Òò´Ë£e 14£®ÒÑÖªº¯Êýy£½x£3x£«cµÄͼÏóÓëxÖáÇ¡ÓÐÁ½¸ö¹«¹²µã£¬Ôòc£½________£® ½âÎö£ºÉèf(x)£½x£3x£«c£¬ ¶Ôf(x)Ç󵼿ɵã¬f¡ä(x)£½3x£3£¬ Áîf¡ä(x)£½0£¬¿ÉµÃx£½¡À1£¬ Ò×Öªf(x)ÔÚ(£¡Þ£¬£1)£¬(1£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬ 2 33 22 2 aa ÔÚ(£1£¬1)Éϵ¥µ÷µÝ¼õ£® Èôf(1)£½1£3£«c£½0£¬¿ÉÖªc£½2£» Èôf(£1)£½£1£«3£«c£½0£¬¿ÉµÃc£½£2. ´ð°¸£º£2»ò2 15£®ÒÑÖªº¯Êýf(x)£½ax£3x£«1¶Ôx¡Ê(0£¬1]×ÜÓÐf(x)¡Ý0³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ________£® 3x£13x£13 ½âÎö£ºµ±x¡Ê(0£¬1]ʱ²»µÈʽax£3x£«1¡Ý0¿É»¯Îªa¡Ý3£¬Éèg(x)£½3£¬x¡Ê(0£¬1]£¬ xx 3 ?x£1?6?2?32 3x££¨3x£1£©¡¤3x?? g¡ä(x)£½£½£. 64 xx g¡ä(x)Óëg(x)ËæxµÄ±ä»¯Çé¿öÈçÏÂ±í£º x g¡ä(x) g(x) ?0£¬1? ?2???£« 1 20 ¼«´óÖµ4 ?1£¬1? ?2???£ Òò´Ëg(x)µÄ×î´óֵΪ4£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[4£¬£«¡Þ)£® ´ð°¸£º[4£¬£«¡Þ) 16£®Ä³É̳¡´ÓÉú²ú³§¼ÒÒÔÿ¼þ20Ôª¹º½øÒ»ÅúÉÌÆ·£¬Èô¸ÃÉÌÆ·ÁãÊÛ¼ÛΪpÔª£¬ÏúÁ¿Q(µ¥Î»£º¼þ)ÓëÁãÊÛ¼Ûp (µ¥Î»£ºÔª)ÓÐÈçϹØÏµ£ºQ£½8 300£170p£p£¬Ôò¸ÃÉÌÆ·ÁãÊÛ¼Û¶¨Îª________ԪʱÀûÈó×î´ó£¬ÀûÈóµÄ×î´óֵΪ________Ôª£® 2 ´ð°¸£º30 23 000 17£®¾Ý»·±£²¿ÃŲⶨ£¬Ä³´¦µÄÎÛȾָÊýÓ븽½üÎÛȾԴµÄÇ¿¶È³ÉÕý±È£¬Óëµ½ÎÛȾԴ¾àÀëµÄƽ·½³É·´±È£¬±ÈÀý³£ÊýΪk(k>0)£®ÏÖÒÑÖªÏà¾à18 kmµÄA£¬BÁ½¼Ò»¯¹¤³§(ÎÛȾԴ)µÄÎÛȾǿ¶È·Ö±ðΪa£¬b£¬ËüÃÇÁ¬ÏßÉÏÈÎÒâÒ»µãC´¦µÄÎÛȾָÊýyµÈÓÚÁ½»¯¹¤³§¶Ô¸Ã´¦µÄÎÛȾָÊýÖ®ºÍ£®ÉèAC£½x(km)£® (1)ÊÔ½«y±íʾΪxµÄº¯Êý£» (2)Èôa£½1£¬ÇÒx£½6ʱ£¬yÈ¡µÃ×îСֵ£¬ÊÔÇóbµÄÖµ£® kakb ½â£º(1)ÉèµãCÊÜAÎÛȾԴÎÛȾ³Ì¶ÈΪ2£¬µãCÊÜBÎÛȾԴÎÛȾ³Ì¶ÈΪ2£¬ÆäÖÐkΪ±ÈÀýϵÊý£¬ÇÒk>0. x£¨18£x£©´Ó¶øµãC´¦ÊÜÎÛȾ³Ì¶Èy£½ kakb 2£«2. x£¨18£x£© kkb (2)ÒòΪa£½1£¬ËùÒÔ£¬y£½2£«2£¬ x£¨18£x£©2b?2?y¡ä£½k?£3£«3? ?x£¨18£x£©?Áîy¡ä£½0£¬µÃx£½ 18 £¬ 31£«b ÓÖ´Ëʱx£½6£¬½âµÃb£½8£¬¾ÑéÖ¤·ûºÏÌâÒ⣬ ËùÒÔ£¬ÎÛȾԴBµÄÎÛȾǿ¶ÈbµÄֵΪ8. be 18£®É躯Êýf(x)£½aeln x£«£¬ÇúÏßy£½f(x)ÔÚµã(1£¬f(1))´¦µÄÇÐÏß·½³ÌΪy£½e(x£1)£«2. x x x£1 (1)Çóa£¬b£» (2)Ö¤Ã÷£ºf(x)>1. 2x£1.x (2)Ö¤Ã÷£ºÓÉ(1)Öª£¬f(x)£½eln x£«e£¬ x2£x ´Ó¶øf(x)>1µÈ¼ÛÓÚxln x>xe££¬ eÉ躯Êýg(x)£½xln x£¬Ôòg¡ä(x)£½1£«ln x. ?1?ËùÒÔµ±x¡Ê?0£¬?ʱ£¬g¡ä(x)<0£» ?e??1?µ±x¡Ê?£¬£«¡Þ?ʱ£¬g¡ä(x)>0. ?e? ?1??1?¹Êg(x)ÔÚ?0£¬?Éϵ¥µ÷µÝ¼õ£¬ÔÚ?£¬£«¡Þ?Éϵ¥µ÷µÝÔö£¬ ?e??e? 1?1?´Ó¶øg(x)ÔÚ(0£¬£«¡Þ)ÉϵÄ×îСֵΪg??£½£. e?e? 2£x£x É躯Êýh(x)£½xe££¬Ôòh¡ä(x)£½e(1£x)£® eËùÒÔµ±x¡Ê(0£¬1)ʱ£¬h¡ä(x)>0£» µ±x¡Ê(1£¬£«¡Þ)ʱ£¬h¡ä(x)<0. ¹Êh(x)ÔÚ(0£¬1)Éϵ¥µ÷µÝÔö£¬ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£¬ 1 ´Ó¶øh(x)ÔÚ(0£¬£«¡Þ)ÉϵÄ×î´óֵΪh(1)£½£. e×ÛÉÏ£¬µ±x>0ʱ£¬g(x)>h(x)£¬¼´f(x)>1. 19£®ÒÑÖªº¯Êýf(x)£½ln x£«(a£¾0)£® (1)Èôº¯Êýf(x)ÓÐÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£» 21 (2)Ö¤Ã÷£ºµ±a¡Ý£¬b£¾1ʱ£¬f(ln b)£¾. ebax 11 (2)Áîh(x)£½xlnx£«a £¬Ôòh¡ä(x)£½ln x£«1£¬µ±0£¼x£¼Ê±£¬f¡ä(x)£¼0£»µ±x£¾Ê±£¬f¡ä(x)£¾0£¬ËùÒÔº¯Êý ee h(x)ÔÚ?0£¬?Éϵ¥µ÷µÝ¼õ£¬ÔÚ?£¬£«¡Þ?Éϵ¥µ÷µÝÔö£® ee ?? 1?? ?1? ?? 11211 µ±x£½Ê±£¬[h(x)]min£½££«a£¬ÓÚÊÇ£¬µ±a¡Ýʱ£¬h(x)¡Ý££«a¡Ý£¬¢Ù eeeee Áî¦Õ(x)£½xe£¬Ôò¦Õ¡ä(x)£½e£xe£½e(1£x)£¬µ±0£¼x£¼1ʱ£¬¦Õ¡ä(x)£¾0£» µ±x£¾1ʱ£¬¦Õ¡ä(x)£¼0£¬ËùÒÔº¯Êý¦Õ(x)ÔÚ(0£¬1)Éϵ¥µ÷µÝÔö£¬ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£®µ±x£½1ʱ£¬[¦Õ(x)]max 11 £½£¬ÓÚÊÇ£¬µ±x£¾0ʱ£¬¦Õ(x)¡Ü£¬¢Ú ee 2£xÏÔÈ»£¬²»µÈʽ¢Ù¡¢¢ÚÖеĵȺŲ»ÄÜͬʱ³ÉÁ¢£¬¹Êµ±x£¾0£¬a¡Ýʱ£¬xln x£«a£¾xe£¬ e £x£x£x£xa11bÒòΪb£¾1£¬ËùÒÔln b£¾0£¬ËùÒÔln b¡¤ln(ln b)£«a£¾ln b¡¤e£ln£¬ËùÒÔln(ln b)£«£¾£¬¼´f(ln b)£¾. ln bbb20.ÒÑÖªº¯Êýf(x)£½ln x£ a£¨x£1£© (a¡ÊR). x