2019Äê¸ß¿¼Êýѧ£¨Àí£©Ò»ÂÖ¸´Ï°¾«Æ·×ÊÁÏ
1£®·½³Ìx£6x£«9x£10£½0µÄʵ¸ù¸öÊýÊÇ( ) A£®3 B£®2 C£®1 D£®0
½âÎö£ºÉèf(x)£½x£6x£«9x£10£¬f¡ä(x)£½3x£12x£«9£½3(x£1)(x£3)£¬ÓÉ´Ë¿ÉÖªº¯ÊýµÄ¼«´óֵΪf(1)£½£6<0£¬¼«Ð¡ÖµÎªf(3)£½£10<0£¬ËùÒÔ·½³Ìx£6x£«9x£10£½0µÄʵ¸ù¸öÊýΪ1¸ö£®
´ð°¸£ºC
2£®Ä³¹«Ë¾Éú²úijÖÖ²úÆ·£¬¹Ì¶¨³É±¾Îª20 000Ôª£¬Ã¿Éú²úÒ»µ¥Î»²úÆ·£¬³É±¾Ôö¼Ó100Ôª£¬ÒÑÖª×ÜÓªÒµÊÕÈëRÓë1??400x£x2£¬£¨0¡Üx¡Ü400£©£¬2Äê²úÁ¿xµÄ¹ØÏµÊÇR£½R(x)£½?Ôò×ÜÀûÈó×î´óʱ£¬Äê²úÁ¿ÊÇ( )
??80 000£¬£¨x>400£©£¬
A£®100 B£® 150 C£®200 D£®300
3
2
3
2
2
3
2
´ð°¸£ºD
3£®Èô´æÔÚÕýÊýxʹ2(x£a)<1³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§ÊÇ( ) A£®(£¡Þ£¬£«¡Þ) B£®(£2£¬£«¡Þ) C£®(0£¬£«¡Þ) D£®(£1£¬£«¡Þ) 1x
½âÎö£º¡ß2(x£a)<1£¬¡àa>x£x.
2
1£x
Áîf(x)£½x£x£¬¡àf¡ä(x)£½1£«2ln 2>0.
2¡àf(x)ÔÚ(0£¬£«¡Þ)Éϵ¥µ÷µÝÔö£¬
x
¡àf(x)>f(0)£½0£1£½£1£¬ ¡àaµÄȡֵ·¶Î§Îª(£1£¬£«¡Þ)£¬ ´ð°¸£ºD
3
4£®Èô¶¨ÒåÔÚRÉϵĺ¯Êýf(x)Âú×ãf(x)£«f¡ä(x)>1£¬f(0)£½4£¬Ôò²»µÈʽf(x)>x£«1(eΪ×ÔÈ»¶ÔÊýµÄµ×Êý)µÄ½â
e¼¯Îª( )
A£®(0£¬£«¡Þ) B£®(£¡Þ£¬0)¡È(3£¬£«¡Þ) C£®(£¡Þ£¬0)¡È(0£¬£«¡Þ) D£®(3£¬£«¡Þ) 3xx
½âÎö£ºÓÉf(x)>x£«1µÃ£¬ef(x)>3£«e£¬
e
¹¹Ô캯ÊýF(x)£½ef(x)£e£3£¬µÃF¡ä(x)£½ef(x)£«ef¡ä(x)£e£½e[f(x)£«f¡ä(x)£1]£® ÓÉf(x)£«f¡ä(x)>1£¬e>0£¬¿ÉÖªF¡ä(x)>0£¬¼´F(x)ÔÚRÉϵ¥µ÷µÝÔö£¬ ÓÖÒòΪF(0)£½ef(0)£e£3£½f(0)£4£½0£¬ ËùÒÔF(x)>0µÄ½â¼¯Îª(0£¬£«¡Þ)£® ´ð°¸£ºA
5£®ÒÑÖªº¯Êýf(x)£½ax£3x£«1£¬Èôf(x)´æÔÚΨһµÄÁãµãx0£¬ÇÒx0>0.ÔòaµÄȡֵ·¶Î§ÊÇ( ) A£®(2£¬£«¡Þ) B£®(1£¬£«¡Þ) C£®(£¡Þ£¬£2) D£®(£¡Þ£¬£1)
3
2
0
0x
x
x
x
x
x
x
´ð°¸£ºC
6.ÈôÉÌÆ·µÄÄêÀûÈóy(ÍòÔª)ÓëÄê²úÁ¿x(°ÙÍò¼þ)µÄº¯Êý¹ØÏµÊ½Îªy£½£x£«27x£«123(x>0)£¬Ôò»ñµÃ×î´óÀûÈóʱµÄÄê²úÁ¿Îª( )
A.1°ÙÍò¼þ C.3°ÙÍò¼þ
B.2°ÙÍò¼þ D.4°ÙÍò¼þ
3
½âÎö y¡ä£½£3x£«27£½£3(x£«3)(x£3)£¬µ±0
7.µ±x¡Ê[£2£¬1]ʱ£¬²»µÈʽax£x£«4x£«3¡Ý0ºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ( ) A.[£5£¬£3] C.[£6£¬£2]
9??B.?£6£¬£? 8??
D.[£4£¬£3]
3
2
2
´ð°¸ C
8.ÒÑÖªº¯Êýf(x)µÄ¶¨ÒåÓòΪ[£1£¬4]£¬²¿·Ö¶ÔÓ¦ÖµÈçÏÂ±í£º
x f(x) £1 1 0 2 2 0 3 2 4 0 f(x)µÄµ¼º¯Êýy£½f¡ä(x)µÄͼÏóÈçͼËùʾ.µ±1 A.1 C.3 B.2 D.4 ½âÎö ¸ù¾Ýµ¼º¯ÊýͼÏó£¬Öª2ÊǺ¯ÊýµÄ¼«Ð¡Öµµã£¬º¯Êýy£½f(x)µÄ´óÖÂͼÏóÈçͼËùʾ. ÓÉÓÚf(0)£½f(3)£½2£¬1 ´ð°¸ D 9.¶¨ÒåÔÚRÉϵĺ¯Êýf(x)Âú×㣺f(x)£«f¡ä(x)>1£¬f(0)£½4£¬Ôò²»µÈʽef(x)>e£«3(ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý)µÄ½â¼¯Îª( ) A.(0£¬£«¡Þ) C.(£¡Þ£¬0)¡È(0£¬£«¡Þ) xxxxB.(£¡Þ£¬0)¡È(3£¬£«¡Þ) D.(3£¬£«¡Þ) ½âÎö Éèg(x)£½ef(x)£e(x¡ÊR)£¬ Ôòg¡ä(x)£½ef(x)£«ef¡ä(x)£e£½e[f(x)£«f¡ä(x)£1]£¬ ÒòΪf(x)£«f¡ä(x)>1£¬ ËùÒÔf(x)£«f¡ä(x)£1>0£¬ËùÒÔg¡ä(x)>0£¬ ËùÒÔg(x)£½ef(x)£eÔÚ¶¨ÒåÓòÉϵ¥µ÷µÝÔö£¬ ÒòΪef(x)>e£«3£¬ËùÒÔg(x)>3. ÓÖÒòΪg(0)£½ef(0)£e£½4£1£½3£¬ ËùÒÔg(x)>g(0)£¬ËùÒÔx>0. ´ð°¸ A 10.ÒÑÖªÖ±Ïßy£½bÓ뺯Êýf(x)£½2x£«3ºÍg(x)£½ax£«ln x·Ö±ð½»ÓÚA£¬BÁ½µã£¬Èô|AB|µÄ×îСֵΪ2£¬Ôòa£«b£½________. 0 0 xxxxxxxx ´ð°¸ 2 11.×öÒ»¸öÎ޸ǵÄÔ²ÖùÐÎˮͰ£¬ÈôҪʹÆäÌå»ýÊÇ27¦Ð dm£¬ÇÒÓÃÁÏ×îÊ¡£¬ÔòÔ²ÖùµÄµ×Ãæ°ë¾¶Îª________ dm. 272 ½âÎö ÉèÔ²ÖùµÄµ×Ãæ°ë¾¶ÎªR dm£¬Ä¸Ïß³¤Îªl dm£¬ÔòV£½¦ÐRl£½27¦Ð£¬ËùÒÔl£½2£¬ÒªÊ¹ÓÃÁÏ×îÊ¡£¬Ö»ÐèʹԲ 3 RÖùÐÎˮͰµÄ±íÃæ»ý×îС.