VCC外部脉冲信号OC门XTAL2MCS-51XTAL1VSS
图5 MCS-51单片机外部时钟输入接线图
所谓时序,是指在指令执行过程中,CPU的控制器所发出的一系列特定的控制信号在时间上的先后关系。CPU发出的控制信号有两类:一类是用于单片机内部的,用户不能直接接触此类信号,不必对它作过多了解;另一类是通过控制总线送到片外的,人们通常以时序图的形式来表示相关信号的波形及出现的先后次序。为了说明信号的时间关系,需要定义时序单位。89C51的时序单位共有四个,从小到大依次是拍节、状态、机器周期和指令周期。如图4所示。
S1S2S3S4S5S6S1S2S3S4S5S6fOSC(XTAL2)P1P2P1P2P1P2P1P2P1P2P1P2P1P2P1P2P1P2P1P2P1P2P1P2P1P2机器周期机器周期
1.4单片机的复位
1.4.1 复位状态
复位是单片机的初始化操作,其主要功能是将程序计数器PC初始化为0000H,使单片机从0000H单元开始执行程序。除了进入系统的正常初始化外,当程序运行出错或操作错误使系统处于死锁状态时,也须重新启动单片机,使其
复位。
单片机复位后,除P3~P0的端口锁存器被设置成FFH、堆栈指针SP设置成07H和串行口的SBUF无确定值外,其它各专用寄存器包括程序计数器PC均被设置成00H。片内RAM不受复位的影响,上电后RAM中的内容是随机的。记住这些特殊功能寄存器的复位状态,对熟悉单片机操作,简短应用程序中的初始化部分是十分必要的。
1.4.2 复位电路
单片机的复位操作有上电自动复位和手动按键复位两种方式。上电自动复位操作要求接通电源后自动实现复位操作。如图1.5-1所示。图6(a)所示为最简单的复位电路。上电瞬间由于电容C上无储能,其端电压近似为零,RST获得高电平,随着电容器C的充电,RST引脚上的高电平将逐渐下降,当RST引脚上的电压小于某一数值后,单片机就脱离复位状态,进入正常工作模式。只要高电平能保持复位所需要的时间(约两个机器周期),单片机就能实现复位。
相比于图6(a),图6(b)所示的电路只是增加了外接二极管VD和电阻R。其优越性在于停电后,二极管VD给电容C提供了快速放电通路,保证再上电时RST为高电平,从而保证单片机可靠复位。正常工作时,二极管反偏,对电路没影响。断电后,VCC逐渐下降,当VCC=0时,电容C通过VD迅速放电,恢复到无电量的初始状态,为下次上电复位做好准备。
VCC+5VC22μFVCC+5VC22μFRSTVDVSS R8.2KΩVSS
(a) (b)
+MCS-51RST+MCS-51图6 上电自动复位电路
手动按键复位要求在电源接通的条件下,用按钮开关操作使单片机复位,如图7所示。其工作原理为:复位键按下后,电容C通过R2放电,放电结束后,
RST引脚的电位由R1和R2 分压决定,由于R2< +5VSVCCR2270ΩC22μFRSTVD R18.2KΩVSS 图7 手动按键复位电路 +MCS-51系统上电运行后,若需要复位,一般是通过手动复位来实现的。通常采用手动复位和上电自动复位结合。复位电路虽然简单,但其作用十分重要。一个单片机系统能否正常运行,首先要检查是否能复位成功。初步检查可用示波器探头监视RST引脚,按下复位键,观察是否有足够幅度的波形输出(瞬时的),还可以通过改变复位电路阻容值的方法进行检测。 2. 流水灯电路及程序设计 2.1 电路原理图设计 按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。AT89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS 8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个16位定时/计数器、5个向量两级中断结构、2个全双工的串行口,具有4.25~5.50V的电压工作范围和0~24MHz工作频率,使用AT89C51单片机时无须外扩存储器。因此,本流水灯实际上就是一个带有八个发光二极管的单片 机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组 成的单个单片机。从原理图中可以看出,如果要让接在P1.0口的LED1亮起来,那么只要把P1.0口的电平变为低电平就可以了;相反,如果要接在P1.0口的LED1熄灭,就要把P1.0口的电平变为高电平;同理,接在P1.1~P1.7口的其他7个LED的点亮和熄灭的方法同LED1。因此,要实现流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的做流水灯了。在此我们还应注意一点,由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到“流水”效果了。 设计原理图如图8所示: 图8流水灯硬件原理图